Encyclopedia of Cancer

Living Edition
| Editors: Manfred Schwab

Chromophore-Assisted Laser Inactivation

  • Daniel G. Jay
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27841-9_1137-2



Technology to address protein function in situ. CALI uses laser light of 620 nm, targeted via specific malachite green-labeled non-function-blocking antibodies, which generate short-lived protein-damaging free radicals (Fig. 1). This wavelength is not absorbed by cells, such that nonspecific light damage does not occur. The short lifetime of the free radicals generated restricts the damage largely to the bound antigen (∼15 Å) such that even neighboring proteins are not significantly affected. Micro-CALI focuses the laser light through microscope optics such that proteins within a 10 μ spot may be inactivated.


High Resolution Mass Spectrometry Target Validation Functional Inactivation Myosin Versus Nerve Growth Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Beermann AE, Jay DG (1994) Chromophore-assisted laser inactivation of cellular proteins. Methods Cell Biol 44:716–732Google Scholar
  2. Bulina ME, Lukyanov KA, Britanova OV, Onichtchouk D, Lukyanov S, Chudakov DM (2006) Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed. Nat Protoc 1:947–953PubMedCrossRefGoogle Scholar
  3. Ilag LL, Ng JH, Jay DG (2000) Chromophore-assisted laser inactivation (CALI) to validate drug targets and pharmacogenomic markers. Drug Dev Res 49:65–73CrossRefGoogle Scholar
  4. Lamb RF, Ozanne BW, Roy C et al (1997) Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr Biol 7:682–688PubMedCrossRefGoogle Scholar
  5. Lamb RF, Roy C, Diefenbach TJ et al (2000) The TSC1 tumor suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol 2:281–287PubMedCrossRefGoogle Scholar
  6. Lin JY, Sann SB, Zhou K, Nabavi S, Proulx CD, Malinow R, Jin Y, Tsien RY (2013) Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79(2):241–53. doi: 10.1016/j.neuron.2013.05.022PubMedPubMedCentralCrossRefGoogle Scholar
  7. Takemoto K, Matsuda T, Sakai N, Fu D, Noda M, Uchiyama S, Kotera I, Arai Y, Horiuchi M, Fukui K, Ayabe T, Inagaki F, Suzuki H, Nagai T (2013) SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation. Sci Rep 3:2629. doi: 10.1038/srep02629PubMedPubMedCentralCrossRefGoogle Scholar
  8. Wang FS, Jay DG (1996) Chromophore-assisted laser inactivation (CALC): probing protein function in situ with a high degree of spatial and temporal resolution. Trends Cell Biol 6:444–447Google Scholar

See Also

  1. (2012) High Throughput Screens. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1695. doi: 10.1007/978-3-642-16483-5_2732Google Scholar
  2. (2012) Laser. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 1984. doi: 10.1007/978-3-642-16483-5_3284Google Scholar
  3. (2012) Proteome. In: Schwab M (ed) Encyclopedia of Cancer, 3rd edn. Springer Berlin Heidelberg, p 3100. doi: 10.1007/978-3-642-16483-5_4819Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Tufts University School of MedicineBostonUSA