Skip to main content

Phytoplankton

  • Living reference work entry
  • First Online:
Encyclopedia of Astrobiology
  • 40 Accesses

Synonyms

Algae; Microalgae

Definition

The term plankton comes from the Greek meaning to drift or wander and was introduced in 1887 by Victor Hensen to refer to biological matter that drifts in bodies of water (Mills 1989). The term phytoplankton refers to the photosynthetic species of the plankton community. Phytoplankton are a genetically diverse set of organisms that include the prokaryotic cyanobacteria and many eukaryotic groups (Hackett et al. 2007; Simon et al. 2009).

Overview

Evolutionary History

Microfossil and molecular clock evidence indicates that prokaryotes originated in the Archean and eukaryotes in the Proterozoic (Betts et al. 2018). Determining when these groups first became photosynthetic, first became planktonic, and whether they originally inhabited fresh or marine environments is extremely challenging. Analyses of extant cyanobacterial genomes indicate that photosynthesis may have been acquired relatively late in the evolution of cyanobacteria, perhaps not long...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Behrenfeld MJ, O’Malley R, Siegel D, McClain C, Sarmiento J, Feldman G, Milligan A, Falkowski P, Letelier R, Boss E (2006) Climate-driven trends in contemporary ocean productivity. Nature (London) 444:752–755

    Article  ADS  Google Scholar 

  • Betts HC, Puttick MN, Clark JW, Williams TA, Donoghue PCJ, Pisani D (2018) Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat Ecol Evol 2(10):1556–1562. https://doi.org/10.1038/s41559-018-0644-x

    Article  Google Scholar 

  • de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, LukeÅ¡ J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237):1261605. https://doi.org/10.1126/science.1261605

    Article  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  ADS  Google Scholar 

  • Finkel ZV (2014) Marine net primary production. In: Global environmental change. Springer, Dordrecht, pp 117–124

    Chapter  Google Scholar 

  • Finkel ZV, Katz M, Wright J, Schofield O, Falkowski PG (2005) Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic. Proc Natl Acad Sci USA 102(25):8927–8932

    Article  ADS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32(1):119–137

    Article  Google Scholar 

  • Hackett JD, Su Yoon H, Butterfield NJ, Sanderson MJ, Bhattacharya D (2007) Chapter 7 – Plastid endosymbiosis: sources and timing of the major events. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the sea. Academic, Burlington, pp 109–132. https://doi.org/10.1016/B978-012370518-1/50008-4

    Chapter  Google Scholar 

  • Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol Oceanogr 52(4):1293–1304. https://doi.org/10.4319/lo.2007.52.4.1293

    Article  ADS  Google Scholar 

  • Katz ME, Finkel ZV, Gryzebek D, Knoll AH, Falkowski PG (2004) Eucaryotic phytoplankton: evolutionary trajectories and global biogeochemical cycles. Annu Rev Ecol Evol Syst 35:523–556. https://doi.org/10.1146/annurev.ecolsys.35.112202.130137

    Article  Google Scholar 

  • Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, Lehnen N, Fuchs BM, Lavik G, Schmitz RA, LaRoche J, Kuypers MMM (2016) The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol 1:16163. https://doi.org/10.1038/nmicrobiol.2016.163. https://www.nature.com/articles/nmicrobiol2016163-supplementary-information

    Article  Google Scholar 

  • Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65(1):91–110. https://doi.org/10.1146/annurev-micro-090110-102903

    Article  Google Scholar 

  • Mills EL (1989) Biological oceanography. An early history, 1870–1960. Cornell University Press, Ithaca/London

    Google Scholar 

  • Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM, Poulton AJ, Tyrrell T, Beaufort L, Dutkiewicz S, Gibbs S, Gutowska MA, Lee R, Riebesell U, Young J, Ridgwell A (2016) Why marine phytoplankton calcify. Sci Adv 2(7):e1501822. https://doi.org/10.1126/sciadv.1501822

    Article  ADS  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63(1):106–127

    Article  Google Scholar 

  • Richardson TL, Jackson GA (2007) Small phytoplankton and carbon export from the surface ocean. Science 315:838–840

    Article  ADS  Google Scholar 

  • Riebesell U, Wolf-Gladrow DA, Smetacek V (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361:249–251

    Article  ADS  Google Scholar 

  • Sánchez-Baracaldo P (2015) Origin of marine planktonic cyanobacteria. Sci Rep 5:17418. https://doi.org/10.1038/srep17418. https://www.nature.com/articles/srep17418-supplementary-information

    Article  ADS  Google Scholar 

  • Sieburth JM, Smetacek V, Lenz J (1978) Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol Oceanogr 23(6):1256–1263

    Article  ADS  Google Scholar 

  • Simon N, Cras A-L, Foulon E, Lemée R (2009) Diversity and evolution of marine phytoplankton. C R Biol 332(2):159–170. https://doi.org/10.1016/j.crvi.2008.09.009

    Article  Google Scholar 

  • Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499. https://doi.org/10.1038/nrmicro2594

    Article  Google Scholar 

  • Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355(6332):1436–1440. https://doi.org/10.1126/science.aal3794

    Article  ADS  Google Scholar 

  • Sournia A, Chretiennot-Dinet M-J, Ricard M (1991) Marine phytoplankton: how many species in the world ocean? J Plankton Res 13(5):1093–1099

    Article  Google Scholar 

  • Stoecker DK, Hansen PJ, Caron DA, Mitra A (2017) Mixotrophy in the marine plankton. Annu Rev Mar Sci 9(1):311–335. https://doi.org/10.1146/annurev-marine-010816-060617

    Article  ADS  Google Scholar 

  • Subramaniam A, Yager PL, Carpenter EJ, Mahaffey C, Björkman K, Cooley S, Kustka AB, Montoya JP, Sañudo-Wilhelmy SA, Shipe R, Capone DG (2008) Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc Natl Acad Sci USA 105(30): 10460–10465. https://doi.org/10.1073/pnas.0710279105

    Article  ADS  Google Scholar 

  • Tang EPY (1996) Why do dinoflagellates have lower growth rates? J Phycol 32(1):80–84

    Article  MathSciNet  Google Scholar 

  • Tréguer P, Bowler C, Moriceau B, Dutkiewicz S, Gehlen M, Leblanc K, Aumont O, Bittner L, Dugdale R, Finkel Z, Guidi L, Iudicone D, Jahn O, Lasbleiz M, Levy M, Pondaven P (2017) Influence of diatom diversity on the ocean biological carbon pump. Nat Geosci 11:27. https://doi.org/10.1038/s41561-017-0028-x

    Article  ADS  Google Scholar 

  • Villareal TA (1994) Widespread occurrence of the Hemiaulus-cyanobacterial symbiosis in the southwest North Atlantic Ocean. Bull Mar Sci 54(1):1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe V. Finkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Finkel, Z.V., Irwin, A.J. (2020). Phytoplankton. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_5416-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_5416-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27833-4

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics