Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Tides, Archean

  • Christoph HeubeckEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_5154-1

Synonyms

Definition

Tides are periodic deformations of a planet’s solid, liquid, and gaseous substances due to their locally changing gravitational attraction to an orbiting object. This article will limit itself to marine tides on Earth caused by the Moon.

Overview

Tides are highly productive ecologic zones, providing an ideal and variable mix of nutrients, water, and energy for life. Wetting and drying cycles in sandy pore spaces in tidal zones make ideal biochemical laboratories, and the strong abrasive forces provided by rolling sand grains result in high rates of lateral gene transfers between injured or squashed cells. Recent and ancient tidal zones have thus long attracted the attention of biologists, prebiotic chemists, and geneticists. Nevertheless, the dynamics of tidal zones in the deep geologic past are difficult to quantify.

Basic Methodology

Apollo Lunar Laser Ranging since the 1970 has established that the radius of the Moon’s orbit about Earth currently...

Keywords

Tides Archean Moon Tidal friction Tidal range 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Archer AW (1996a) Panthalassa: paleotidal resonance and a global paleocean seiche. Paleoceanography 11:625–632CrossRefADSGoogle Scholar
  2. Archer AW (1996b) Reliability of lunar orbital periods extracted from ancient cyclic tidal rhythmites. Earth Planet Sci Lett 141:1–10CrossRefADSGoogle Scholar
  3. Brosche P (1984). Tidal friction in the Earth–Moon system. In: Hide R, Wilkins GA, McCrea WH, Message PJ, Runcorn SK (eds) Rotation in the solar system. J R Soc London 313, p 71–75Google Scholar
  4. Kagan BA (1997) Earth–Moon tidal evolution: model results and observational evidence. Prog Oceanogr 40:109–124CrossRefADSGoogle Scholar
  5. Kvale EP, Johnson HW, Sonett CP, Archer AW, Zawistoski A (1999) Calculating lunar retreat rates using tidal rhythmites. J Sediment Res 69:1154–1168CrossRefGoogle Scholar
  6. Longhitano SG, Mellere D, Steel RJ, Ainsworth RB (2012) Tidal depositional systems in the rock record: a review and new insights. Sediment Geol 279:2–22CrossRefADSGoogle Scholar
  7. Mazumder R, Arima M (2005) Tidal rhythmites and their implications. Earth Sci Rev 69:79–95CrossRefADSGoogle Scholar
  8. Mueller WU, Corcoran PL, Donaldson JA (2002). Sedimentology of tide- and wave-influenced high-energy Archaean coastline: the Jackson Lake Formation, Slave province, Canada. In: Altermann W, Corcoran P (eds) Special Publication International Association of Sedimentologists 33, 153–182Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenFriedrich-Schiller-Universität JenaJenaGermany