Skip to main content

RNA World

  • Living reference work entry
  • First Online:
  • 302 Accesses

Synonyms

RNA life

Definition

The RNA world is a hypothesized early stage in the evolution of life that may have preceded the last universal common ancestor (LUCA) of all modern organisms. In this scenario, ribonucleic acid (RNA) was the sole information-rich biopolymer, performing both the catalytic and genetic roles played by proteins and deoxyribonucleic acid (DNA), respectively, in the modern cell. The proposed vestiges of the RNA world are found throughout modern biology, most notably in the central functional roles of RNA found in protein translation.

Overview

Darwin’s prediction that all modern life has descended from a single, primitive common ancestor has been thoroughly confirmed by modern biology (Grant and Carpenter 2003). Indeed, comparative genomics has begun to shed light on the genome content of the last universal common ancestor(LUCA), revealing a biochemically sophisticated cellular organism with an extensive metabolism and a fully modern form of protein translation...

This is a preview of subscription content, log in via an institution.

References and Further Reading

  • Agmon I et al (2009) Identification of the prebiotic translation apparatus within the contemporary ribosome. Available from Nature Precedings. http://precedings.nature.com/documents/2921/version/1

  • Becerra A et al (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38:361–379

    Article  MathSciNet  Google Scholar 

  • Benner S, Ellington A, Tauer A (1989) Modern metabolism as a palimpsest of the RNA world. Proc Natl Acad Sci 86:7054

    Article  ADS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980

    Article  ADS  Google Scholar 

  • Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263. doi:10.1146/annurev.biophys.050708.133753

    Article  Google Scholar 

  • Cech T (2009) Crawling out of the RNA world. Cell 136:599–602

    Article  Google Scholar 

  • Chen X, Li N, Ellington A (2007) Ribozyme catalysis of metabolism in the RNA world. Chem Biodivers 4:633–655

    Article  Google Scholar 

  • Chen YG et al (2009) LC/MS analysis of cellular RNA reveals NAD-linked RNA. Nat Chem Biol 5:879–881

    Article  ADS  Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443

    Article  Google Scholar 

  • Dworkin J, Lazcano A, Miller S (2003) The roads to and from the RNA world. J Theor Biol 222:127–134

    Article  Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124

    Article  Google Scholar 

  • Francklyn CS, Minajigi A (2010) tRNA as an active chemical scaffold for diverse chemical transformations. FEBS Lett 584:366–375

    Article  Google Scholar 

  • Gartner ZJ, Liu DR (2001) The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J Am Chem Soc 123:6961–6963

    Article  Google Scholar 

  • Gesteland RF, Cech TR, Atkins JF (2006) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbor Laboratory, Woodbury

    Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  ADS  Google Scholar 

  • Goldman AD, Samudrala R, Baross JA (2010) The evolution and functional repertoire of translation proteins following the origin of life. Biol Direct 5:15

    Article  Google Scholar 

  • Hagiwara Y et al (2010) Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst. J Am Chem Soc 132:2751–2758

    Article  Google Scholar 

  • Johnston WK et al (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325

    Article  MathSciNet  ADS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  ADS  Google Scholar 

  • Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836

    Article  Google Scholar 

  • Joyce GF (2007) Forty years of in vitro evolution. Angew Chem Int Ed Engl 46:6420–6436

    Article  Google Scholar 

  • Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  Google Scholar 

  • Kowtoniuk WE et al (2009) A chemical screen for biological small molecule-RNA conjugates reveals CoA-linked RNA. Proc Natl Acad Sci U S A 106:7768–7773

    Article  ADS  Google Scholar 

  • Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232

    Article  ADS  Google Scholar 

  • Müller UF (2006) Re-creating an RNA world. Cell Mol Life Sci 63:1278–1293

    Article  Google Scholar 

  • Nielsen PE (2007) Peptide nucleic acids and the origin of life. Chem Biodivers 4:1996–2002

    Article  Google Scholar 

  • Noller HF (2004) The driving force for molecular evolution of translation. RNA 10:1833–1837

    Article  Google Scholar 

  • Noller HF (2005) RNA structure: reading the ribosome. Science 309:1508–1514

    Article  ADS  Google Scholar 

  • Nowak MA, Ohtsuki H (2008) Prevolutionary dynamics and the origin of evolution. Proc Natl Acad Sci U S A 105:14924–14927

    Article  ADS  Google Scholar 

  • Ohuchi M, Murakami H, Suga H (2007) The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus. Curr Opin Chem Biol 11:537–542

    Article  Google Scholar 

  • Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6, e18

    Article  Google Scholar 

  • Peretó J, Bada JL, Lazcano A (2009) Darwin and the origin of life. Orig Life Evol Biosph 39:395–406

    Article  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  ADS  Google Scholar 

  • Ridley M (2004) Evolution. Blackwell Science, Malden

    Google Scholar 

  • Robertson MP, Scott WG (2007) The structural basis of ribozyme-catalyzed RNA assembly. Science 315:1549–1553

    Article  ADS  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    Article  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    Google Scholar 

  • Schimmel P (2008) Development of tRNA synthetases and connection to genetic code and disease. Evolution 17:1643–1652. doi:10.1110/ps.037242.108.tree

    Google Scholar 

  • Schimmel P, Ribas De Pouplana L (1995) Transfer RNA: from minihelix to genetic code. Cell 81:983–986

    Article  Google Scholar 

  • Schmeing TM et al (2005) Structural insights into the roles of water and the 2 0 hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20:437–448

    Article  Google Scholar 

  • Schrum JP et al (2009) Efficient and rapid template-directed nucleic acid copying using 2′-amino-2′, 3′-dideoxyribonucleoside-5′-phosphorimidazolide monomers. J Am Chem Soc 131:14560–14570

    Article  Google Scholar 

  • Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286

    Article  Google Scholar 

  • Segre D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 97:4112–4117

    Article  ADS  Google Scholar 

  • Sharp PA (2009) The centrality of RNA. Cell 136:577–580

    Article  Google Scholar 

  • Shechner DM et al (2009) Crystal structure of the catalytic core of an RNA-polymerase ribozyme. Science 326:1271–1275

    Article  ADS  Google Scholar 

  • Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    Article  ADS  Google Scholar 

  • Steitz T, Moore P (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  Google Scholar 

  • Szathmáry E, Maynard Smith J (1997) From replicators to reproducers: the first major transitions leading to life. J Theor Biol 187:555–571

    Article  Google Scholar 

  • Toor N et al (2008) Crystal structure of a self-spliced group II intron. Science 320:77–82

    Article  ADS  Google Scholar 

  • Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci U S A 107:4585–4589

    Article  ADS  Google Scholar 

  • Weinberg Z et al (2009) Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis. Nature 462:656–659

    Article  ADS  Google Scholar 

  • Wolf YI, Koonin EV (2007) On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Biol Direct 2:14

    Article  Google Scholar 

  • Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393–404

    Article  Google Scholar 

  • Zaher HS, Unrau PJ (2007) Selection of an improved RNA polymerase ribozyme with superior extension and fidelity. RNA 13:1017–1026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Horning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Horning, D.P. (2014). RNA World. In: Amils, R., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27833-4_1740-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27833-4_1740-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27833-4

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics