Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso


  • Athena Coustenis
  • François Raulin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1594-2


Titan is the only satellite in the solar system to possess a dense atmosphere, composed essentially of nitrogen (97 %) and methane (2 %). These two molecules give rise to a host of organic compounds, rendering Titan one of the most astrobiologically interesting and unique bodies to study, as currently done by the Cassini-Huygens mission. This is compounded with the seasonal effects on the atmosphere, the geomorphological features on the surface, and the probable internal liquid water ocean all of which make Titan a very promising Earth analogue that can inform us about the emergence and evolution of life, albeit in different conditions.


Astrobiology, the study of life in the universe, is not only the study of the origins, distribution, and evolution of living beings but also that of structures and processes related to life from its emergence to its development to what we see today. It thus includes the question of the origins of life on Earth and elsewhere, as well...


Titan Cassini-Huygens Extraterrestrial organic chemistry Liquid surface Titan’s astrobiology Titan’s atmosphere Titan’s surface Titan’s tholins 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Achterberg RK et al (2011) Temporal variations of Titan’s middle-atmospheric temperatures from 2004 to 2009 observed by Cassini/CIRS. Icarus 211:686–698CrossRefADSGoogle Scholar
  2. Atreya SK, Adams EY, Niemann HB et al (2006) Titan’s methane cycle. Planet Space Sci 54:1177–1187CrossRefADSGoogle Scholar
  3. Barnes JW, Bow J, Schwartz J et al (2011) Organic sedimentary deposits in Titan’s dry lakebeds: probable evaporite. Icarus 216:136–140CrossRefADSGoogle Scholar
  4. Barnes JW et al (2013) A transmission spectrum of Titan’s North Polar atmosphere from a specular reflection of the sun. Astrophys J 777:161CrossRefADSGoogle Scholar
  5. Barnes JW et al (2014) Specular reflections from Titan’s Punga Mare seen by Cassini VIMS indicate surface roughness: waves? 45th Lunar and Planetary Science ConferenceGoogle Scholar
  6. Béghin C, Canu P, Karkoschka E et al (2009) New insights on Titan’s plasma-driven Schumann resonance inferred from Huygens and Cassini data. Planet Space Sci 57:1872–1888CrossRefADSGoogle Scholar
  7. Bird MK, Allison M, Asmar SW, Atkinson DH, Avruch IM, Dutta-Roy R, Dzierma Y, Edenhofer P, Folkner WM, Gurvits LI, Johnston DV, Plettemeier D, Pogrebenko SV, Preston RA, Tyler GL (2005) The vertical profile of winds on Titan. Nature 438:800–802CrossRefADSGoogle Scholar
  8. Brown RH, Soderblom LA, Soderblom JM et al (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610CrossRefADSGoogle Scholar
  9. Brown R, Lebreton J-P, Waite H (eds) (2009) Titan from Cassini-Huygens. Springer, New York, p 535. ISBN 1402092148Google Scholar
  10. Cable M, Horst S, Hodyss R, Beauchamp P, Smith M, Willis P (2012) Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. Chem Rev 112(3):1882–1909CrossRefGoogle Scholar
  11. Cordier D et al (2012) Titan’s lakes chemical composition: sources of uncertainties and variability. Planet Space Sci 61:99–107CrossRefADSGoogle Scholar
  12. Cornet T et al (2012) Geomorphological significance of Ontario Lacus on Titan: integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia). Icarus 218:788–806CrossRefADSGoogle Scholar
  13. Coustenis, A., Encrenaz, Th (2013) Life beyond Earth: the search for habitable worlds in the Universe. Cambridge Univ. Press, New YorkGoogle Scholar
  14. Coustenis A, Taylor F (2008) Titan: exploring an Earth-like world. World Scientific, SingaporeCrossRefGoogle Scholar
  15. Coustenis A et al (2008) TandEM: Titan and Enceladus mission. Exp Astron. doi:10.1007/s10686-008-9103-zGoogle Scholar
  16. Coustenis A et al (2010) Titan trace gaseous composition from CIRS at the end of the Cassini-Huygens prime mission. Icarus 207:461–476CrossRefADSGoogle Scholar
  17. Dalba PA et al (2012) Cassini VIMS observations show ethane is present in Titan’s rainfall. Astrophys J 761:L24CrossRefADSGoogle Scholar
  18. Dougherty M, Esposito L, Krimigis T (eds) (2009) Saturn from Cassini-Huygens. Springer, New York, 805 pp. ISBN 1402092164Google Scholar
  19. Elachi C et al (2005) Cassini radar views the surface of Titan. Science 308:970–974CrossRefADSGoogle Scholar
  20. Fulchignoni M et al (2005) Titan’s physical characteristics measured by the Huygens Atmospheric Instrument (HASI). Nature 438:785–791CrossRefADSGoogle Scholar
  21. Griffith CA et al (2012) Possible tropical lakes on Titan from observations of dark terrain. Nature 486:237–239CrossRefADSGoogle Scholar
  22. Hayes A et al (2010) Bathymetry and absorptivity of Titan’s Ontario Lacus. J Geophys Res 115(E09009):11Google Scholar
  23. Hemingway D, Nimmo F, Zebker H, Iess L (2013) A rigid and weathered ice shell on Titan. Nature 500:550–552CrossRefADSGoogle Scholar
  24. Iess L et al (2012) The tides of Titan. Science 337:457–459CrossRefADSGoogle Scholar
  25. Israël G et al (2005) Evidence for the presence of complex organic matter in Titan’s aerosols by in situ analysis. Nature 438:796–799CrossRefADSGoogle Scholar
  26. Jennings DE, Flasar FM, Kunde VG et al (2009) Titan’s surface brightness temperatures. Astrophys J Lett 691:L103–L105CrossRefADSGoogle Scholar
  27. Lebreton J-P, Coustenis A, Lunine J, Raulin F, Owen T, Strobel D (2008) Results from the Huygens probe on Titan. Astron Astrophys Rev 17:149–179CrossRefADSGoogle Scholar
  28. Lopes RMC et al (2007) Cryovolcanic features on Titan’s surface as revealed by the Cassini Titan Radar Mapper. Icarus 186:395–412CrossRefADSGoogle Scholar
  29. Lopes RMC et al (2010) Distribution and interplay of geologic processes on Titan from Cassini radar data. Icarus 205:540–558CrossRefADSGoogle Scholar
  30. Lopes RMC et al (2013) Cryovolcanism on Titan: new results from Cassini RADAR and VIMS. J Geophys Res Planet 118:416–435CrossRefADSGoogle Scholar
  31. López-Puertas M et al (2013) Large abundances of polycyclic aromatic hydrocarbons in Titan’s upper atmosphere. Astrophys J 770:132CrossRefADSGoogle Scholar
  32. Lorenz RD, Mitton J (2008) Titan unveiled. Princeton University Press, PrincetonGoogle Scholar
  33. Lorenz RD et al (2006) The sand seas of Titan: Cassini radar observations of longitudinal dunes. Science 312:724–727CrossRefADSGoogle Scholar
  34. Lorenz RD et al (2008a) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319:1649–1651CrossRefADSGoogle Scholar
  35. Lorenz RD et al (2008b) Fluvial channels on Titan: initial Cassini radar observations. Planet Space Sci 56:1132–1144CrossRefADSGoogle Scholar
  36. Lorenz RD et al (2013) A global topographic map of Titan. Icarus 225:367–377CrossRefADSGoogle Scholar
  37. Lorenz RD et al (2014) A radar map of Titan seas: tidal dissipation and ocean mixing through the throat of Kraken. Icarus 237:9–15CrossRefADSGoogle Scholar
  38. Lunine JI (1993) Does Titan have an ocean? A review of current understanding of Titan’s surface. Rev Geophys 31:133–149CrossRefADSGoogle Scholar
  39. Lunine JI, Atreya SK (2008) The methane cycle on Titan. Nat Geosci 1:159–164CrossRefADSGoogle Scholar
  40. Lunine JI et al (2008) Titan’s diverse landscapes as evidenced by Cassini radar’s third and fourth looks at Titan. Icarus 195:415–433CrossRefADSGoogle Scholar
  41. McCord TB, Hayne P, Combe J-P et al (2008) Titan’s surface: search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242CrossRefADSGoogle Scholar
  42. McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276CrossRefADSGoogle Scholar
  43. Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186:385–394CrossRefADSGoogle Scholar
  44. Moore JM, Pappalardo RT (2011) Titan: an exogenic world? Icarus 212:790–806CrossRefADSGoogle Scholar
  45. Mueller-Wodarg I, Griffith C, Lellouch E, Cravens T (eds) (2014) Titan: surface, atmosphere and space environment. Cambridge University Press, New YorkGoogle Scholar
  46. Nature (2005) The Huygens probe on Titan. Nature 438:756–802CrossRefGoogle Scholar
  47. Nelson RM, Brown RH, Hapke BW, Smythe WD, Kamp L, Boryta MD et al (2006) Photometric properties of Titan’s surface from Cassini VIMS: relevance to Titan’s hemispherical albedo dichotomy and surface stability. Planet Space Sci 54:1540–1551CrossRefADSGoogle Scholar
  48. Niemann HB et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784CrossRefADSGoogle Scholar
  49. Niemann HB, Atreya SK, Demick JE, Gautier D, Haberman JA, Harpold DN, Kasprzak WT, Lunine JI, Owen TC, Raulin F (2010) The composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res Planet 115:E1206CrossRefGoogle Scholar
  50. Nixon CA et al (2013) Detection of propene in Titan’s stratosphere. Astrophys J Lett 776:L14CrossRefADSGoogle Scholar
  51. Perron JT et al (2006) Valley formation and methane precipitation rates on Titan. J Geophys Res 111:E11001CrossRefADSGoogle Scholar
  52. Porco CC et al (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168CrossRefADSGoogle Scholar
  53. Radebaugh J, Lorenz RD, Kirk RL, Lunine JI, Stofan ER, Lopes RMC, Wall SD, The Cassini Radar Team (2007) Mountains on Titan observed by Cassini radar. Icarus 192:77–91CrossRefADSGoogle Scholar
  54. Radebaugh J, Lorenz RD, Lunine JI, Wall SD, Boubin G, Reffet E, Kirk RL, Lopes RM, Stofan ER et al (2008) Dunes on Titan observed by Cassini Radar. Icarus 194:690–703CrossRefADSGoogle Scholar
  55. Raulin F (2008) Planetary science: organic lakes on Titan. Nature 454:587–589CrossRefADSGoogle Scholar
  56. Raulin F, Gazeau M-C, Lebreton JP (2008) Latest news from Titan. Planet Space Sci 56(5):571–572CrossRefADSGoogle Scholar
  57. Raulin F, Brasse C, Poch O, Coll P (2012) Prebiotic-like chemistry on Titan. Chem Soc Rev 41(16):5380–5393CrossRefGoogle Scholar
  58. Schneider T, Graves SDB, Schaller EL, Brown ME (2012) Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481:58–61CrossRefADSGoogle Scholar
  59. Soderblom LA, Tomasko MG, Archinal BA, Becker TL et al (2007a) Topography and geomorphology of the Huygens landing site on Titan. Planet Space Sci 55:2015–2024CrossRefADSGoogle Scholar
  60. Soderblom LA, Kirk RL, Lunine JI et al (2007b) Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the Huygens Probe Landing Site. Planet Space Sci 55:2025–2036CrossRefADSGoogle Scholar
  61. Soderblom JM et al (2009) The geology of Hotei Regio, Titan: correlation of Cassini VIMS and RADAR. Icarus 204:610–618CrossRefADSGoogle Scholar
  62. Soderblom JM et al (2012) Modeling specular reflections from hydrocarbon lakes on Titan. Icarus 220:744–751CrossRefADSGoogle Scholar
  63. Sohl F, Solomonidou A, Wagner FW, et al (2014). Tidal stresses on Titan and implications for its geology and habitability. J Geophys Res 119:1013–1036Google Scholar
  64. Solomonidou A et al (2013) Morphotectonic features on Titan and their possible origin. Planet Space Sci 77:104–117CrossRefADSGoogle Scholar
  65. Sotin C et al (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789CrossRefADSGoogle Scholar
  66. Stofan ER, Elachi C, Lunine JI et al (2007) The lakes of Titan. Nature 445:61–64CrossRefADSGoogle Scholar
  67. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan’s internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502CrossRefADSGoogle Scholar
  68. Tobie G, Gautier D, Hersant F (2012) Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing. Astrophys J 752:AI 125CrossRefADSGoogle Scholar
  69. Tokano T (2013) Are tropical cyclones possible over Titan’s polar seas? Icarus 223:766–774CrossRefADSGoogle Scholar
  70. Tomasko MG et al (2005) Results from the Descent Imager/Spectral Radiometer (DISR) instrument on the Huygens probe of Titan. Nature 438:765–778CrossRefADSGoogle Scholar
  71. Turtle EP, Perry JE, McEwen AS et al (2009) Cassini imaging of Titan’s high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36:L02204CrossRefADSGoogle Scholar
  72. Turtle EP, Perry JE, Hayes AG et al (2011) Rapid and extensive surface changes near titan’s equator: evidence of April showers. Science 331:1414–1417CrossRefADSGoogle Scholar
  73. Waite JH, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The process of tholin formation in Titan’s upper atmosphere. Science 316:870–875CrossRefADSGoogle Scholar
  74. Waite JH et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–492CrossRefADSGoogle Scholar
  75. Wall SD et al (2009) Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys Res Lett 36:L04203CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire d’ Etudes Spatiales et d’ Instrumentation en Astrophysique (LESIA)Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-DiderotMeudon CedexFrance
  2. 2.LISA – UMR CNRS 7583Université Paris Est Créteil et Paris Diderot, Faculté des Sciences et TechnologieCreteil CedexFrance