Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Tides, Planetary

  • Tilman SpohnEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1592-2


Tides are deformations of a planet or natural satellite caused by periodic variations of the local gravity acceleration as the planet or satellite rotates and revolves in the gravity field of a (disturbing) body. Tidal disturbances of a planet are primarily caused by the Sun and by the planet’s satellites. The planet will – in turn – also tidally disturb the satellites. On the Earth, tides are caused by the Sun and the Moon. Marine tides – the tidal deformation of the surface of the oceans – are most obvious and well known. In addition, there are atmospheric pressure variations caused by tidal accelerations and tidal deformations of the solid planet. Dissipation of tidal deformation energy can be a substantial heat source for planets and satellites and can cause changes in the rotation and orbital parameters.


The equilibrium surface of a planet depends on the distribution of mass in its interior (interior structure) and its rotation rate. The gravitational and...


Tidal deformation Tidal dissipation Tidal locking Tidal potential Tides 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778CrossRefADSGoogle Scholar
  2. Fischer HJ, Spohn T (1990) Thermal-orbital histories of visco-elastic models of Io (J1). Icarus 83:39–65CrossRefADSGoogle Scholar
  3. Hubbard WB (1984) Planetary interiors. Van Nostrand, New York, p 334Google Scholar
  4. Hussmann H, Spohn T (2004) Coupled thermal and orbital evolution of Europa and Io. Icarus 171:391–410CrossRefADSGoogle Scholar
  5. Hussmann H, Sohl F, Oberst J (2010) Measuring tidal deformations at Europa’s surface. J Adv Space Res 48(4):718–724. doi:10.1016/j.asr.2010.06.001CrossRefADSGoogle Scholar
  6. Lambeck K (1977) Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences. Phil Trans R Soc Lond A 287:545–594CrossRefADSGoogle Scholar
  7. Peale SJ, Canup RM (2015) The origin of the natural satellites. In: Spohn T, Schubert G (eds) Treatise on geophysics 2nd ed, vol 10. Elsevier, Amsterdam, pp 559–604Google Scholar
  8. Spencer JR, Rathburn JA, Travis LD, Tamppari LK, Barnard L, Martin TZ (2000) Io’s thermal emission from the Galileo photopolarimeter-radiometer. Science 288:1198–1201CrossRefADSGoogle Scholar
  9. Spohn T (1997) Tides of Io. In: Wilhelm H, Zürn W, Wenzel HG (eds) Lecture notes in earth sciences, vol 66. Springer, Heidelberg, pp 345–377Google Scholar
  10. Stacey FD, Davies PM (2008) Physics of the Earth. Cambridge University Press, Cambridge, p 426CrossRefzbMATHGoogle Scholar
  11. Tobie G, Cadek O, Sotin C (2008) Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus 196:642–652CrossRefADSGoogle Scholar
  12. Zschau J (1978) Tidal friction in the solid Earth: loading tides versus body tides. In: Brosche P, Sündermann J (eds) Tidal friction and the Earth’s rotation. Springer, Berlin, pp 62–94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institut für PlanetenforschungBerlinGermany