Encyclopedia of Astrobiology

Living Edition
| Editors: Muriel Gargaud, William M. Irvine, Ricardo Amils, Henderson James Cleaves, Daniele Pinti, José Cernicharo Quintanilla, Michel Viso

Oxygen Isotopes

  • Ko HashizumeEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27833-4_1138-6


Oxygen has three stable isotopes: oxygen-16, oxygen-17, and oxygen-18. In most studies on terrestrial samples, only the 18O/16O ratio is usually measured and discussed, where the mass-dependent fractionation law, expressed by δ17O ≈ 0.52 × δ18O, can be safely assumed (see Delta, Isotopic, for the δ notation). The δ17O values among extraterrestrial samples significantly deviate from the above shown relationship. This deviation bears prime importance in cosmochemistry and, naturally, in astrobiology.


Oxygen is the most abundant element in the planetary system, except among the giant planets, Jupiter and Saturn, where hydrogen and helium dominate their masses. Oxygen is accommodated as a major constituent in most types of building blocks, rocks (MOx), water (H2O), and organics (CHONS), which are essential in constructing a terrestrial planet, particularly a habitable planet. Oxygen isotope compositions among solid planetary materials are generally expected to bear...


Isotope anomaly Fractionation mass independent Organic matter Photochemistry Self-shielding Solar composition Water 
This is a preview of subscription content, log in to check access.

References and Further Reading

  1. Clayton RN (1993) Oxygen isotopes in meteorites. Annu Rev Earth Planet Sci 21:115–149MathSciNetCrossRefADSGoogle Scholar
  2. Clayton RN (2002) Self-shielding in the solar nebula. Nature 415:860–861CrossRefADSGoogle Scholar
  3. Clayton RN (2005) Oxygen isotopes in meteorites. In: Davis AM (ed) Meteorites, comets and planets. Treatise on geochemistry, vol 1. Elsevier-Pergamon, Oxford, pp 129–142Google Scholar
  4. Clayton RN, Grossman L, Mayeda T (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182:485–488CrossRefADSGoogle Scholar
  5. Hashizume K, Chaussidon M (2005) A non-terrestrial 16O-rich isotopic composition for the protosolar nebula. Nature 434:619–622CrossRefADSGoogle Scholar
  6. Hashizume K, Takahata N, Naraoka H, Sano Y (2011) Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nat Geosci 4:165–168CrossRefADSGoogle Scholar
  7. Ireland Isotopic enhancements of 17O and 18O from solar wind particles in the lunar regolith. Nature 440:776–778Google Scholar
  8. Kitamura Y, Shimizu M (1983) Oxygen isotopic anomaly and solar nebular photochemistry. Moon Planet 29:199–202CrossRefADSGoogle Scholar
  9. Lyons JR, Young ED (2005) CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435:317–320CrossRefADSGoogle Scholar
  10. Marcus RA (2004) Mass-independent isotope effect in the earliest processed solids in the solar system: a possible mechanism. J Chem Phys 121:8201–8211CrossRefADSGoogle Scholar
  11. McKeegan KD, Kallio APA, Heber VS, Jarzebinski G, Mao PH, Coath CD, Kunihiro T, Wiens RC, Nordholt JE, Moses RW Jr, Reisenfeld DB, Jurewicz AJG, Burnett DS (2011) The oxygen isotopic composition of the sun inferred from captured solar wind. Science 332:1528–1532CrossRefADSGoogle Scholar
  12. Navon O, Wasserburg GJ (1985) Self-shielding in O2 – a possible explanation for oxygen isotope anomalies in meteorites? Earth Planet Sci Lett 73:1–16CrossRefADSGoogle Scholar
  13. Nguyen AN, Stadermann FJ, Zinner E, Stroud RM, Alexander C, O’D M, Nittler LR (2007) Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. Astrophys J 656:1223–1240CrossRefADSGoogle Scholar
  14. Sakamoto N, Seto Y, Itoh S, Kuramoto K, Fujino K, Nagashima K, Krot AN, Yurimoto H (2007) Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317:231–233CrossRefADSGoogle Scholar
  15. Thiemens MH (1999) Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283:341–345CrossRefADSGoogle Scholar
  16. van Dishoeck EF, Black JH (1988) The photodissociation and chemistry of interstellar CO. Astrophys J 334:771–802CrossRefADSGoogle Scholar
  17. Visser R, van Dishoeck EF, Black JH (2009) The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks. Astron Astrophys 503:323–343CrossRefADSGoogle Scholar
  18. Young ED, Russell SS (1998) Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282:452–455CrossRefADSGoogle Scholar
  19. Yurimoto H, Kuramoto K (2004) Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305:1763–1766CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Earth and Space SciencesOsaka UniversityToyonakaJapan