Advertisement

Probiotics in Aging Skin

  • Benedetta Cinque
  • Paola Palumbo
  • Cristina La Torre
  • Esterina Melchiorre
  • Daniele Corridoni
  • Gianfranca Miconi
  • Luisa Di Marzio
  • Maria Grazia Cifone
  • Maurizio Giuliani
Living reference work entry

Abstract

Health benefits of probiotics have been established by several studies in animals and humans, and the scientific literature shows that the clinical uses of probiotics are broad and are open to continuing evaluation. The most common microorganisms used as probiotics are strains of lactic acid bacteria (LAB), which are gram-positive, nonsporing, catalase-negative organisms that are devoid of cytochromes and of nonaerobic habit but are aerotolerant, acid-tolerant, and strictly fermentative; lactic acid is the major end product of sugar fermentation. Particular attention is paid to specific species of lactic acid bacteria (LAB), including Lactobacilli and Bifidobacteria, that are part of the intestinal microbiota. Most probiotics are included in foods or dietary supplements and are aimed at functioning in the intestine. However, even if gastrointestinal tract has been the primary target, it is becoming evident that other conditions not initially associated with the gut microbiota might also be affected by probiotics.

Keywords

Lactic Acid Bacterium Stratum Corneum Probiotic Strain Atopic Dermatitis Patient Reactive Oxide Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fioramonti J, et al. Probiotics: what are they? What are their effects on gut physiology? Best Pract Res Clin Gastroenterol. 2003;17(5):711–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Reid G. How science will help shape future clinical applications of probiotics. Clin Infect Dis. 2008;46 Suppl 2:S62–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Silva M, et al. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother. 1987;31:1231–3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Heczko PB, et al. Critical evaluation of probiotic activity of lactic acid bacteria and their effects. J Physiol Pharmacol. 2006;57 Suppl 9:S5–12.Google Scholar
  5. 5.
    Gionchetti P, et al. Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol. 2006;12:3306–13.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Farnworth ER. The evidence to support health claims for probiotics. J Nutr. 2008;138(6):1250S–4.PubMedGoogle Scholar
  7. 7.
    Sleator RD, et al. New frontiers in probiotic research. Lett Appl Microbiol. 2008;46(2):143–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Di Marzio L, et al. Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities. Nutr Cancer. 2001;40(2):185–96.CrossRefPubMedGoogle Scholar
  9. 9.
    de Moreno de LeBlanc A, et al. The application of probiotics in cancer. Br J Nutr. 2007;98 Suppl 1:S105–10.Google Scholar
  10. 10.
    Goldin BR. Clinical indications for probiotics: an overview. Clin Infect Dis. 2008;46 Suppl 2:S96–100.CrossRefPubMedGoogle Scholar
  11. 11.
    Macpherson AJ, et al. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Fisher GJ, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Bojar RA, et al. Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol. 2002;18(9):889–903.CrossRefGoogle Scholar
  14. 14.
    Cogen AL, et al. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–55.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ouwehand AC, et al. Probiotics for the skin: a new area of potential application? Lett Appl Microbiol. 2003;36(5):327–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Tannock GW. Normal microflora. An introduction to microbes inhabiting the human body. London: Chapman & Hall; 1995.Google Scholar
  17. 17.
    Suomalainen R, et al. Propionic acid bacteria as protective cultures in fermented milks and breads. Lait. 1999;79:165–74.CrossRefGoogle Scholar
  18. 18.
    Fluhr JW, et al. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:44–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Fluhr JW, et al. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol. 2004;122:320–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Lambers H, et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Mauro T. SC pH: measurement, origins, and functions. In: Elias P, Feingold K, editors. Skin barrier. New York: Taylor & Francis; 2006. p. 223–9.Google Scholar
  22. 22.
    Fluhr JW, et al. Functional consequences of a neutral pH in neonatal rat stratum corneum. J Invest Dermatol. 2004;123:140–51.CrossRefPubMedGoogle Scholar
  23. 23.
    Hachem JP, et al. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Hachem JP, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Waller JM, et al. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Choi EH, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127(12):2847–56.CrossRefPubMedGoogle Scholar
  27. 27.
    Yadav H, et al. Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. Int Dairy J. 2007;17(8):1006–10.CrossRefGoogle Scholar
  28. 28.
    Holleran WM, et al. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580(23):5456–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J Invest Dermatol. 1999;113(1):98–106.CrossRefPubMedGoogle Scholar
  30. 30.
    Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003;12(5):615–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Di Marzio L, et al. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol. 2008;21(1):137–43.PubMedGoogle Scholar
  32. 32.
    Denda M, et al. Age- and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res. 1993;285(7):415–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Motta S, et al. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch Dermatol. 1994;130(4):452–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Jensen JM, et al. Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol. 2005;14(8):609–18.CrossRefPubMedGoogle Scholar
  35. 35.
    Kohen R, et al. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology. 2000;148(2–3):149–57.CrossRefPubMedGoogle Scholar
  36. 36.
    Hensley K, et al. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83.CrossRefPubMedGoogle Scholar
  37. 37.
    Tzaphlidou M. The role of collagen and elastin in aged skin: an image processing approach. Micron. 2004;35(3):73–177.Google Scholar
  38. 38.
    Dalle Carbonare M, et al. Skin photosensitizing agents and the role of reactive oxygen species in photoaging. J Photochem Photobiol. 1992;14(1–2):105–24.CrossRefGoogle Scholar
  39. 39.
    Helfrich YR, et al. Overview of skin aging and photoaging. Dermatol Nurs. 2008;20(3):177–83.PubMedGoogle Scholar
  40. 40.
    Kodali VP, et al. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J. 2008;3(2):245–51.CrossRefPubMedGoogle Scholar
  41. 41.
    Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev. 1990;7(1–2):113–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Welman AD, et al. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003;21(6):269–74.CrossRefPubMedGoogle Scholar
  43. 43.
    Kishk YFM, et al. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT- Food Sci Technol. 2007;40(2):270–7.CrossRefGoogle Scholar
  44. 44.
    Bruno-Bárcena JM, et al. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol. 2004;70(8):4702–10.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kang S, et al. Photoaging and topical tretinoin: therapy, pathogenesis, and prevention. Arch Dermatol. 1997;133(10):1280–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Massagué J. TGF-β signal transduction. Annu Rev Biochem. 1998;67:753–91.CrossRefPubMedGoogle Scholar
  47. 47.
    Chung JH, et al. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000;115(2):177–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Varani J, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114(3):480–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801–10.CrossRefPubMedGoogle Scholar
  50. 50.
    Ulisse S, et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am J Gastroenterol. 2001;96(9):2691–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Riccia DN, et al. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 2007;13(4):376–85.CrossRefPubMedGoogle Scholar
  52. 52.
    Moorthy G, et al. Protective role of lactobacilli in Shigella dysenteriae 1-induced diarrhea in rats. Nutrition. 2007;23(5):424–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Dorshkind K. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Victor VM, et al. N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxininduced oxidative stress. Free Radic Res. 2002;36:33–45.CrossRefPubMedGoogle Scholar
  55. 55.
    Dewberry C, et al. Skin cancer in elderly patients. Dermatol Clin North Am. 2004;22:93–6.CrossRefGoogle Scholar
  56. 56.
    Nova E, et al. Immunomodulatory effects of probiotics in different stages of life. Br J Nutr. 2007;98 Suppl 1:S90–5.PubMedGoogle Scholar
  57. 57.
    Chiang BL, et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000;54:849–55.CrossRefPubMedGoogle Scholar
  58. 58.
    Gill HS, et al. Optimizing immunity and gut function in the elderly. J Nutr Health Aging. 2001;5:80–91.PubMedGoogle Scholar
  59. 59.
    Caramia G, et al. Probiotics and the skin. Clin Dermatol. 2008;26(1):4–11.CrossRefPubMedGoogle Scholar
  60. 60.
    Isolauri E. Probiotics in human disease. Am J Clin Nutr. 2001;73:S1142–6.Google Scholar
  61. 61.
    Cals-Grierson MM, et al. Nitric oxide function in the skin. Nitric Oxide. 2004;10(4):179–93.CrossRefPubMedGoogle Scholar
  62. 62.
    Ouwehand AC, et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol. 2008;53(1):18–25.CrossRefPubMedGoogle Scholar
  63. 63.
    Guéniche A, et al. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur J Dermatol. 2006;16:511–7.PubMedGoogle Scholar
  64. 64.
    Peguet-Navarro J, et al. Supplementation with oral probiotic bacteria protects human cutaneous immune homeostasis after UV exposure-double blind, randomized, placebo controlled clinical trial. Eur J Dermatol. 2008;18:504–11.PubMedGoogle Scholar
  65. 65.
    Canche-Pool EB, et al. Probiotics and autoimmunity: an evolutionary perspective. Med Hypotheses. 2008;70:657–60.CrossRefPubMedGoogle Scholar
  66. 66.
    Hsu CJ, et al. Emerging treatment of atopic dermatitis. Clin Rev Allergy Immunol. 2007;33:199–203.CrossRefPubMedGoogle Scholar
  67. 67.
    Railan D, et al. Ablative treatment of photoaging. Dermatol Ther. 2005;18:227–41.CrossRefPubMedGoogle Scholar
  68. 68.
    Gorbach SL. Probiotics in the third millennium. Dig Liver Dis. 2002;34 Suppl 2:2–7.CrossRefGoogle Scholar
  69. 69.
    Fan YF, et al. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm. 2006;324:158–67.CrossRefPubMedGoogle Scholar
  70. 70.
    Hooper LV, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A. 1999;17(96):9833–8.CrossRefGoogle Scholar
  71. 71.
    Sheehan VM, et al. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarium UCC118. Appl Environ Microbiol. 2006;72(3):2170–7.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sheehan VM, et al. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiol. 2007;153(10):3563–71.CrossRefGoogle Scholar
  73. 73.
    Saunders S, et al. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55(2):138–42.CrossRefPubMedGoogle Scholar
  74. 74.
    Thurnheer T, et al. Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods. 2004;56:37–47.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Benedetta Cinque
    • 1
  • Paola Palumbo
    • 1
  • Cristina La Torre
    • 1
  • Esterina Melchiorre
    • 1
  • Daniele Corridoni
    • 2
  • Gianfranca Miconi
    • 1
  • Luisa Di Marzio
    • 3
  • Maria Grazia Cifone
    • 1
  • Maurizio Giuliani
    • 1
  1. 1.Life, Health and Environmental SciencesUniversity of L’AquilaL’AquilaItaly
  2. 2.Division of Gastroenterology and Liver Disease, Department of MedicineCase Western Reserve University School of MedicineClevelandUSA
  3. 3.Department of PharmacyUniversity of Chieti - Pescara “G d‘Annunzio”Chieti - PescaraItaly

Personalised recommendations