Advertisement

The Potential of Probiotics and Prebiotics for Skin Health

  • A. C. Ouwehand
  • S. Lahtinen
  • K. Tiihonen
Living reference work entry

Abstract

The skin is one of the body’s main barriers to the outside world. Similar to many other such barriers, the skin is colonized by a variety of microbes; their composition appears to depend on the place of the skin but is also influenced by age. Furthermore, a number of skin diseases are associated with an altered skin microbiota; cause and effect of the different skin microbiota and the disease/condition may not always be clear. There may, thus, be a benefit in changing the composition of the skin microbiota. Some immunological conditions, however, such as atopic dermatitis may actually benefit from a change in the intestinal microbiota through the consumption of probiotics and prebiotics. Also UV induced immune suppression seems to benefit from the consumption of specific probiotics. Furthermore, in animals probiotics have been reported to improve fur health. There are thus opportunities for topical and oral probiotics in improving skin health.

Keywords

Atopic Dermatitis Stratum Corneum Probiotic Strain Skin Barrier Hairless Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhang M, Jiang Z, Li D, Jiang D, Wu Y, Ren H, et al. Oral antibiotic treatment induces skin microbiota dysbiosis and influences wound healing. Microb Ecol. 2015;69(2):415–21. Epub 2014/10/11.CrossRefPubMedGoogle Scholar
  2. 2.
    FAO/WHO, editor. Guidelines for the evaluation of probiotics in food. 2002. http://www.who.int/foodsafety/publications/fs_management/probiotics2/en/
  3. 3.
    Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14. Epub 2014/06/11.Google Scholar
  4. 4.
    Ouwehand AC, Mäkeläinen H, Tiihonen K, Rautonen N. Digestive health. In: Mitchell H, editor. Sweeteners and sugar alternatives in food technology. Oxford: Blackwell; 2006. p. 44–53.CrossRefGoogle Scholar
  5. 5.
    Warskulat U, Flogel U, Jacoby C, Hartwig HG, Thewissen M, Merx MW, et al. Taurine transporter knockout depletes muscle taurine levels and results in severe skeletal muscle impairment but leaves cardiac function uncompromised. FASEB J. 2004;18(3):577–9. Epub 2004/01/22.PubMedGoogle Scholar
  6. 6.
    Brandner JM, Haftek M, Niessen CM. Adherens junctions, desmosomes and tight junctions in epidermal barrier function. Open Dermatol J. 2010;4(1):14–20.CrossRefGoogle Scholar
  7. 7.
    Svoboda M, Bilkova Z, Muthny T. Could tight junctions regulate the barrier function of the aged skin? J Dermatol Sci. 2016;81(3):147–152. Epub 2015/12/08.Google Scholar
  8. 8.
    Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2. Epub 2009/05/30.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, et al. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–50.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Si J, Lee S, Park JM, Sung J, Ko G. Genetic associations and shared environmental effects on the skin microbiome of Korean twins. BMC Genomics. 2015;16(1):992. Epub 2015/11/26.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3(7):e2719.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44(8):2933–41. Epub 2006/08/08.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, et al. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A. 2015;112(17):E2120–9. Epub 2015/04/01.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–70. Epub 2013/05/24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    van Rensburg JJ, Lin H, Gao X, Toh E, Fortney KR, Ellinger S, et al. The human skin microbiome associates with the outcome of and is influenced by bacterial infection. mBio. 2015;6(5):e01315–15. Epub 2015/09/17.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Putaala H, Tiihonen K, Ouwehand AC, Rautonen N. Probiotics modulate tight junction integrity and expression of junctional proteins in cultured normal human epidermal keratinocytes. J Probiot. 2012;7(2):81–90.Google Scholar
  17. 17.
    Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 1999;147(1):195–204. Epub 1999/10/06.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bek-Thomsen M, Lomholt HB, Kilian M. Acne is not associated with yet-uncultured bacteria. J Clin Microbiol. 2008;46(10):3355–60. Epub 2008/08/22.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fitz-Gibbon S, Tomida S, Chiu BH, Nguyen L, Du C, Liu M, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133(9):2152–60. Epub 2013/01/23.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gao Z, Tseng CH, Pei Z, Blaser MJ. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A. 2007;104(8):2927–32. Epub 2007/02/13.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fahlen A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304(1):15–22. Epub 2011/11/09.CrossRefPubMedGoogle Scholar
  22. 22.
    Alekseyenko AV, Perez-Perez GI, De Souza A, Strober B, Gao Z, Bihan M, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013;1(1):31. Epub 2014/01/24.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Takemoto A, Cho O, Morohoshi Y, Sugita T, Muto M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J Dermatol. 2015;42(2):166–70. Epub 2014/12/17.CrossRefPubMedGoogle Scholar
  24. 24.
    Jagielski T, Rup E, Ziolkowska A, Roeske K, Macura AB, Bielecki J. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014;14:3. Epub 2014/03/08.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dekio I, Sakamoto M, Hayashi H, Amagai M, Suematsu M, Benno Y. Characterization of skin microbiota in patients with atopic dermatitis and in normal subjects using 16S rRNA gene-based comprehensive analysis. J Med Microbiol. 2007;56(Pt 12):1675–83. Epub 2007/11/24.CrossRefPubMedGoogle Scholar
  26. 26.
    Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis. Immunity. 2015;42(4):756–66. Epub 2015/04/23.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Laborel-Preneron E, Bianchi P, Boralevi F, Lehours P, Fraysse F, Morice-Picard F, et al. Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+ T cell activation. PLoS One. 2015;10(10):e0141067. Epub 2015/10/29.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. Epub 2012/02/09.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A, Sugita T. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol. 2011;55(9):625–32. Epub 2011/06/28.CrossRefPubMedGoogle Scholar
  30. 30.
    Bawdon D, Cox DS, Ashford D, James AG, Thomas GH. Identification of axillary Staphylococcus sp. involved in the production of the malodorous thioalcohol 3-methyl-3-sufanylhexan-1-ol. FEMS Microbiol Lett. 2015;362(16). Epub 2015/07/15.Google Scholar
  31. 31.
    Troccaz M, Gaia N, Beccucci S, Schrenzel J, Cayeux I, Starkenmann C, et al. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome. 2015;3(1):3. Epub 2015/02/06.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang L, Clavaud C, Bar-Hen A, Cui M, Gao J, Liu Y, et al. Characterization of the major bacterial-fungal populations colonizing dandruff scalps in Shanghai, China, shows microbial disequilibrium. Exp Dermatol. 2015;24(5):398–400. Epub 2015/03/06.CrossRefPubMedGoogle Scholar
  33. 33.
    Park HK, Ha MH, Park SG, Kim MN, Kim BJ, Kim W. Characterization of the fungal microbiota (mycobiome) in healthy and dandruff-afflicted human scalps. PLoS One. 2012;7(2):e32847. Epub 2012/03/07.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li W, Han L, Yu P, Ma C, Wu X, Moore JE, et al. Molecular characterization of skin microbiota between cancer cachexia patients and healthy volunteers. Microb Ecol. 2014;67(3):679–89. Epub 2014/01/10.CrossRefPubMedGoogle Scholar
  35. 35.
    Prohic A, Simic D, Sadikovic TJ, Krupalija-Fazlic M. Distribution of Malassezia species on healthy human skin in Bosnia and Herzegovina: correlation with body part, age and gender. Iranian J Microbiol. 2014;6(4):253–62. Epub 2015/03/25.Google Scholar
  36. 36.
    Cinque B, Di Marzio L, Della Riccia DN, Bizzini F, Giuliani M, Fanini D, et al. Effect of Bifidobacterium infantis on Interferon- gamma- induced keratinocyte apoptosis: a potential therapeutic approach to skin immune abnormalities. Int J Immunopathol Pharmacol. 2006;19(4):775–86. Epub 2006/12/15.PubMedGoogle Scholar
  37. 37.
    Ouwehand A, Lahtinen S, Nurminen P. Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019. In: Lee YK, Salminen S, editors. Handbook of probiotics and prebiotics. Hoboken: Wiley; 2009. p. 473–7.Google Scholar
  38. 38.
    Mansfield JA, Bergin SW, Cooper JR, Olsen CH. Comparative probiotic strain efficacy in the prevention of eczema in infants and children: a systematic review and meta-analysis. Mil Med. 2014;179(6):580–92. Epub 2014/06/06.CrossRefPubMedGoogle Scholar
  39. 39.
    Foolad N, Armstrong AW. Prebiotics and probiotics: the prevention and reduction in severity of atopic dermatitis in children. Benefic Microbes. 2014;5(2):151–60. Epub 2014/01/28.CrossRefGoogle Scholar
  40. 40.
    Kim SO, Ah YM, Yu YM, Choi KH, Shin WG, Lee JY. Effects of probiotics for the treatment of atopic dermatitis: a meta-analysis of randomized controlled trials. Ann Allergy Asthma Immunol. 2014;113(2):217–26. Epub 2014/06/24.CrossRefPubMedGoogle Scholar
  41. 41.
    Sasajima N, Ogasawara T, Takemura N, Fujiwara R, Watanabe J, Sonoyama K. Role of intestinal Bifidobacterium pseudolongum in dietary fructo-oligosaccharide inhibition of 2,4-dinitrofluorobenzene-induced contact hypersensitivity in mice. Br J Nutr. 2010;103(4):539–48. Epub 2009/12/17.CrossRefPubMedGoogle Scholar
  42. 42.
    Peguet-Navarro J, Dezutter-Dambuyant C, Buetler T, Leclaire J, Smola H, Blum S, et al. Supplementation with oral probiotic bacteria protects human cutaneous immune homeostasis after UV exposure-double blind, randomized, placebo controlled clinical trial. Eur J Dermatol. 2008;18(5):504–11.PubMedGoogle Scholar
  43. 43.
    Marini A, Jaenicke T, Grether-Beck S, Le Floc'h C, Cheniti A, Piccardi N, et al. Prevention of polymorphic light eruption by oral administration of a nutritional supplement containing lycopene, beta-carotene, and Lactobacillus johnsonii: results from a randomized, placebo-controlled, double-blinded study. Photodermatol Photoimmunol Photomed. 2014;30(4):189–94. Epub 2013/11/29.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim HM, Lee DE, Park SD, Kim YT, Kim YJ, Jeong JW, et al. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging. J Microbiol Biotechnol. 2014;24(11):1583–91. Epub 2014/08/13.PubMedGoogle Scholar
  45. 45.
    Satoh T, Murata M, Iwabuchi N, Odamaki T, Wakabayashi H, Yamauchi K, et al. Effect of Bifidobacterium breve B-3 on skin photoaging induced by chronic UV irradiation in mice. Benefic Microbes. 2015;6(4):497–504. Epub 2015/03/27.CrossRefGoogle Scholar
  46. 46.
    Baba H, Masuyama A, Takano T. Effects of Lactobacillus helveticus -fermented milk on the differentiation of cultured normal human epidermal keratinocytes. J Dairy Sci. 2006;89(6):2072–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Miyazaki K, Hanamizu T, Iizuka R, Chiba K. Bifidobacterium-fermented soy milk extract stimulates hyaluronic acid production in human skin cells and hairless mouse skin. Skin Pharmacol Appl Skin Physiol. 2003;16(2):108–16.CrossRefPubMedGoogle Scholar
  48. 48.
    Kim H, Kim HR, Jeong BJ, Lee SS, Kim TR, Jeong JH, et al. Effects of oral intake of kimchi-derived Lactobacillus plantarum K8 lysates on skin moisturizing. J Microbiol Biotechnol. 2015;25(1):74–80. Epub 2014/09/03.CrossRefPubMedGoogle Scholar
  49. 49.
    Nodake Y, Matsumoto S, Miura R, Honda H, Ishibashi G, Matsumoto S, et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe – a blinded randomized clinical trial. J Dermatol Sci. 2015;79(2):119–26. Epub 2015/05/28.CrossRefPubMedGoogle Scholar
  50. 50.
    Levkovich T, Poutahidis T, Smillie C, Varian BJ, Ibrahim YM, Lakritz JR, et al. Probiotic bacteria induce a “glow of health”. PLoS One. 2013;8(1):e53867. Epub 2013/01/24.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Erdman SE, Poutahidis T. Probiotic “glow of health”: it’s more than skin deep. Benefic Microbes. 2014;5(2):109–19. Epub 2014/03/29.CrossRefGoogle Scholar
  52. 52.
    Ouwehand AC, Salminen SJ. The health effects of viable and non-viable cultured milks. Int Dairy J. 1998;8:749–758.Google Scholar
  53. 53.
    Brachkova MI, Marques P, Rocha J, Sepodes B, Duarte MA, Pinto JF. Alginate films containing Lactobacillus plantarum as wound dressing for prevention of burn infection. J Hosp Infect. 2011;79(4):375–7. Epub 2011/10/18.CrossRefPubMedGoogle Scholar
  54. 54.
    Huseini HF, Rahimzadeh G, Fazeli MR, Mehrazma M, Salehi M. Evaluation of wound healing activities of kefir products. Burns. 2012;38(5):719–23. Epub 2012/01/13.CrossRefPubMedGoogle Scholar
  55. 55.
    Nikitenko VI. Infection prophylaxis of gunshot wounds using probiotics. J Wound Care. 2004;13(9):363–6. Epub 2004/11/03.CrossRefPubMedGoogle Scholar
  56. 56.
    Canesso MC, Vieira AT, Castro TB, Schirmer BG, Cisalpino D, Martins FS, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota. J Immunol. 2014;193(10):5171–80. Epub 2014/10/19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Active Nutrition, DuPont Nutrition and HealthKantvikFinland

Personalised recommendations