Skip to main content

Carcinogenesis: UV Radiation

  • Living reference work entry
  • First Online:
Textbook of Aging Skin
  • 181 Accesses

Abstract

The incidence of human skin cancers collectively outnumbers that of all other cancers combined. Ultraviolet radiation (UVR) has long been understood to produce photoproducts in DNA, some of which give rise to specific somatic mutations capable of driving epithelial and melanocytic cancers. Accordingly, the vast numbers of somatic point mutations found in melanoma and basal and squamous cell carcinoma are predominantly base changes associated with UVR. While TP53 and NOTCH1 mutation have emerged as hallmarks of squamous cell carcinomas, as have PTCH mutations in basal cell carcinoma, large-scale sequencing projects are illuminating dozens of other known tumor suppressors and oncogenes mutated at low frequency in both melanomas and nonmelanoma skin cancer. Thus, cells tolerating DNA damage without triggering apoptosis eventually acquire mutations favoring clonal growth, and these populations in turn accumulate additional, lower frequency mutations enhancing oncogenic cell behavior. The process of UV-driven transformation in skin cancers is markedly accelerated not only by deficiencies in DNA repair, but also by immunodeficiency, suggesting that surveillance mechanisms actively eliminate UV-damaged cells, perhaps through T-cell detection of neoepitopes. Genetic factors modulating risk of UV carcinogenesis include resistance conferred by melanin and susceptibility associated with impaired free-radical clearance. Epidemiological efforts have begun validating systemic chemopreventatives, such as caffeine, which may be deployed, in concert with sun protection and avoidance, to further delay UV carcinogenesis.

This chapter is adapted with permission from Ch. 112 of Wolff, E, Goldsmith, L, Katz, S, Gilchrest, B, Paller, A and Leffell, D (eds.), Fitzpatrick’s Dermatology in General Medicine, 7th ed., vol. 1, pp 999–1006, Mc-Graw-Hill, 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Leigh I, Newton-Bishop JA, Kripke ML. Skin cancer, Cancer surveys, vol. 26. Plainview: Cold Spring Harbor Laboratory Press; 1996. p. 361.

    Google Scholar 

  2. Brash DE, Pontén J. Skin precancer. In: Pontén J, editor. Precancer: biology, importance, and possible prevention. Cold Spring Harbor: Cold Spring Harbor Press; 1998. p. 69–113.

    Google Scholar 

  3. Brash DE. Sunlight and the onset of skin cancer. Trends Genet. 1997;13:410–4.

    Article  PubMed  CAS  Google Scholar 

  4. de Gruijl FR, Ananthaswamy HN. Biological effects of ultraviolet radiation, Mutation research, vol. 571. Amsterdam: Elsevier; 2005 (special issue).

    Google Scholar 

  5. Hussein MR. Ultraviolet radiation and skin cancer: molecular mechanisms. J Cutan Pathol. 2005;32(3):191–205.

    Article  PubMed  Google Scholar 

  6. Latonen L, Laiho M. Cellular UV damage responses – functions of tumor suppressor p53. Biochim Biophys Acta. 1755;2005:71–89.

    Google Scholar 

  7. Raj D, Brash DE, Grossman D. Keratinocyte apoptosis in epidermal development and disease. J Invest Dermatol. 2006;126:243–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Green A, MacLennan R, Youl P, Martin N. Site distribution of cutaneous melanoma in Queensland. Int J Cancer. 1993;53:232–6.

    Article  PubMed  CAS  Google Scholar 

  9. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  PubMed  CAS  Google Scholar 

  10. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D, Bastian BC. MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006;313(5786):521–2.

    Article  PubMed  CAS  Google Scholar 

  11. Kollias N, Sayre RM, Zeise L, Chedekel MR. Photoprotection by melanin. J Photochem Photobiol B. 1991;9(2):135–60.

    Article  PubMed  CAS  Google Scholar 

  12. Freeman SE, Hacham H, Gange RW, Maytum DJ, Sutherland JC. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc Natl Acad Sci U S A. 1989;86:5605–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gallagher RP, Spinelli JJ, Lee TK. Tanning beds, sunlamps, and risk of cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev. 2005;14(3):562–6.

    Article  PubMed  Google Scholar 

  14. Wang SY. Photochemistry and photobiology of nucleic acids, vol. I. New York: Academic; 1976, 596 pp.

    Google Scholar 

  15. Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry. 2003;42(30):9221–6.

    Article  PubMed  CAS  Google Scholar 

  16. Cleaver JE. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev Cancer. 2005;5(7):564–73.

    Article  PubMed  CAS  Google Scholar 

  17. Cleaver JE, Feeney L, Tang JY, Tuttle P. Xeroderma pigmentosum group C in an isolated region of Guatemala. J Invest Dermatol. 2007;127(2):493–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zheng CL, et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep. 2014;9(4):1228–34.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Hu J, Adar S, Selby CP, Lieb JD, Sancar A. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. Genes Dev. 2015;29(9):948–60.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP, Halperin AJ, Pontén J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci U S A. 1991;88:10124–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Tornaletti S, Pfeifer GP. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science. 1994;263:1436–8.

    Article  PubMed  CAS  Google Scholar 

  22. Ziegler A, Jonason AS, Leffell DJ, Simon JA, Sharma HW, Kimmelman J, Remington L, Jacks T, Brash DE. Sunburn and p53 in the onset of skin cancer. Nature. 1994;372:773–6.

    Article  PubMed  CAS  Google Scholar 

  23. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA, Leffell DJ, Tarone RE, Brash DE. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A. 1996;93:14025–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Gailani MR, Bale SJ, Leffell DJ, DiGiovanna JJ, Peck GL, Poliak S, Drum MA, Pastakia B, McBride OW, Kase R, Greene M, Mulvihill JJ, Bale AE. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell. 1992;69:111–7.

    Article  PubMed  CAS  Google Scholar 

  25. Hodis E, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Berger MF, et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 2012;485(7399):502–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Krauthammer M, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96.

    Article  Google Scholar 

  29. Huang FW, et al. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339(6122):957–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  PubMed  CAS  Google Scholar 

  31. Fritsche E, et al. Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci U S A. 2007;104(21):8851–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Bender K, Blattner C, Knebel A, Iordanov M, Herrlich P, Rahmsdorf HJ. UV-induced signal transduction. J Photochem Photobiol B. 1997;37:1–17.

    Article  PubMed  CAS  Google Scholar 

  33. Tonks NK. Redox redux: revisiting PTPs and the control of cell signaling. Cell. 2005;121:667–70.

    Article  PubMed  CAS  Google Scholar 

  34. Devary Y, Rosette C, DiDonato JA, Karin M. NF-kB activation by ultraviolet light not dependent on a nuclear signal. Science. 1993;261:1442–5.

    Article  PubMed  CAS  Google Scholar 

  35. Schwarz A, Stander S, Berneburg M, Bohm M, Kulms D, van Steeg H, Grosse-Heitmeyer K, Krutmann J, Schwarz T. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nat Cell Biol. 2002;4:26–31.

    Article  PubMed  CAS  Google Scholar 

  36. Fisher GJ, Datta SC, Talwar HS, Wang ZQ, Varani J, Kang S, Voorhees JJ. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature. 1996;379:335–9.

    Article  PubMed  CAS  Google Scholar 

  37. Hill LL, Ouhtit A, Loughlin SM, Kripke ML, Ananthaswamy HN, Owen-Schaub LB. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science. 1999;285:898–900.

    Article  PubMed  CAS  Google Scholar 

  38. Levy V, Lindon C, Harfe BD, Morgan BA. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell. 2005;9(6):855–61.

    Article  PubMed  CAS  Google Scholar 

  39. Oro AE, Higgins KM, Hu Z, Bonifas JM, Epstein EH, Scott MP. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science. 1997;276:817–21.

    Article  PubMed  CAS  Google Scholar 

  40. Klein AM, Brash DE, Jones PH, Simons BD. Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc Natl Acad Sci U S A. 2010;107(1):270–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Zhang W, Remenyik E, Zelterman D, Brash DE, Wikonkal NM. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc Natl Acad Sci U S A. 2001;98:13948–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Martincorena I, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Durinck S, et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov. 2011;1(2):137–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Wang NJ, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108:17761–6, 201114669.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Mudgil AV, Segal N, Andriani F, Wang Y, Fusenig NE, Garlick JA. Ultraviolet-B irradiation induces expansion of intraepithelial tumor cells in a tissue model of early cancer progression. J Invest Dermatol. 2003;121:191–7.

    Article  PubMed  CAS  Google Scholar 

  46. Ikehata H, et al. Action spectrum analysis of UVR genotoxicity for skin: the border wavelengths between UVA and UVB can bring serious mutation loads to skin. J Invest Dermatol. 2013;133(7):1850–6.

    Article  PubMed  CAS  Google Scholar 

  47. Jans J, Schul W, Sert YG, Rijksen Y, Rebel H, Eker AP, Nakajima S, van Steeg H, de Gruijl FR, Yasui A, Hoeijmakers JH, van der Horst GT. Powerful skin cancer protection by a CPD-photolyase transgene. Curr Biol. 2005;15(2):105–15.

    Article  PubMed  CAS  Google Scholar 

  48. Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE. Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol. 2000;1(6):521–5.

    Article  PubMed  CAS  Google Scholar 

  49. Modi BG, et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335(6064):104–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Takeuchi S, Zhang W, Wakamatsu K, Ito S, Hearing V, Kraemer KH, Brash DE. Melanin acts as a potent UVB sensitizer to cause an atypical mode of cell death in murine skin. Proc Natl Acad Sci U S A. 2004;101:15076–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Premi S, et al. Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science. 2015;347(6224):842–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Ramsay HM, Harden PN, Reece S, Smith AG, Jones PW, Strange RC, Fryer AA. Polymorphisms in glutathione S-transferases are associated with altered risk of nonmelanoma skin cancer in renal transplant recipients: a preliminary analysis. J Invest Dermatol. 2001;117:251–5.

    Article  PubMed  CAS  Google Scholar 

  53. Harrington CR, et al. Addictive-like behaviours to ultraviolet light among frequent indoor tanners. Clin Exp Dermatol. 2011;36(1):33–8.

    Article  PubMed  CAS  Google Scholar 

  54. Kaur M, et al. Induction of withdrawal-like symptoms in a small randomized, controlled trial of opioid blockade in frequent tanners. J Am Acad Dermatol. 2006;54(4):709–11.

    Article  PubMed  Google Scholar 

  55. Song F, Qureshi AA, Han J. Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Res. 2012;72(13):3282–9.

    Article  PubMed  CAS  Google Scholar 

  56. Abel EL, et al. Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women. Eur J Cancer Prev. 2007;16(5):446–52.

    Article  PubMed  Google Scholar 

  57. Loftfield E, et al. Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J Natl Cancer Inst. 2015;107(2). doi:10.1093/jnci/dju421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brash, D.E., Heffernan, T.P., Nghiem, P., Cho, R.J. (2015). Carcinogenesis: UV Radiation. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_56-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_56-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics