Skip to main content

Corneocyte Size and Cell Renewal: Effects of Aging and Sex Hormones

  • Living reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Epidermal barrier function resides almost entirely in the outermost skin layer – stratum corneum (SC). Aging process results in certain structural and functional changes in SC morphology. The epidermis shows a linear decrease in thickness with age. The reduction in epidermal population size suggests that there may be also a decrease in the rate on production of epidermal cells and the apparent lengthening of the SC renewal time. The lengthening of the turnover implies a reduction in the desquamation rate, but this is not as large as thought. The reason for this might be the increase of corneocyte size during aging. There is a correlation and an inverse relationship between SC turnover and dimensions of corneocytes.

Sex hormones exhibit certain effects on SC structure and functions. A decreased sebum content of the forehead in menopausal women and higher SC hydration of the forehead in late menopausal women were observed. SC sphingolipid content and synthesis were decreased with the decrease of the effect of sex hormones with age. Aged epidermal permeability barrier shows decreased cohesion as well as delayed barrier repair with age under stress conditions. Significantly smaller corneocytes in premenopausal women vs. postmenopausal women or men were witnessed and are likely to be attributed to the different levels of female sex hormones. These effects were decreased when hormone replacement therapy was introduced in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Landmann L. The epidermal permeability barrier. Anat Embryol (Berl). 1988;178(1):1–13.

    Article  CAS  Google Scholar 

  2. Steven AC, Steinert PM. Protein composition of cornified cell envelopes of epidermal keratinocytes. J Cell Sci. 1994;107(Pt 2):693–700.

    CAS  PubMed  Google Scholar 

  3. Swartzendruber DC, et al. Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol. 1987;88(6):709–13.

    Article  CAS  PubMed  Google Scholar 

  4. Wertz PW, Downing DT. Covalently bound omega-hydroxyacylsphingosine in the stratum corneum. Biochim Biophys Acta. 1987;917(1):108–11.

    Article  CAS  PubMed  Google Scholar 

  5. Haftek M. ‘Memory’ of the stratum corneum: exploration of the epidermis’ past. Br J Dermatol. 2014;171 Suppl 3:6–9.

    Article  CAS  PubMed  Google Scholar 

  6. Fluhr JW, et al. Development and organization of human stratum corneum after birth: electron microscopy isotropy score and immunocytochemical corneocyte labelling as epidermal maturation’s markers in infancy. Br J Dermatol. 2014;171(5):978–86.

    Article  CAS  PubMed  Google Scholar 

  7. Chu M, Kollias N. Documentation of normal stratum corneum scaling in an average population: features of differences among age, ethnicity and body site. Br J Dermatol. 2011;164(3):497–507.

    CAS  PubMed  Google Scholar 

  8. Furukawa F, et al. Effects of adenosine 5′-monophosphate on epidermal turnover. Arch Dermatol Res. 2008;300(9):485–93.

    Article  CAS  PubMed  Google Scholar 

  9. Kligman AM. Perspectives and problems in cutaneous gerontology. J Invest Dermatol. 1979;73(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  10. Marks R. The effects of photoageing and intrinsic ageing on epidermal structure and function. G Ital Chir Dermatol Oncol. 1987;2:252–63.

    Google Scholar 

  11. Marks R. The epidermal engine: a commentary on epidermopoiesis, desquamation and their interrelationships. Int J Cosmet Sci. 1986;8(3):135–44.

    Article  CAS  PubMed  Google Scholar 

  12. Jansen LH, Hojyo-Tomoko MT, Kligman AM. Improved fluorescence staining technique for estimating turnover of the human stratum corneum. Br J Dermatol. 1974;90(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts D, Marks R. The determination of regional and age variations in the rate of desquamation: a comparison of four techniques. J Invest Dermatol. 1980;74(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  14. Marks R. Measurement of biological ageing in human epidermis. Br J Dermatol. 1981;104(6):627–33.

    Article  CAS  PubMed  Google Scholar 

  15. Grove G, et al. Use of nonintrusive tests to monitor age associated changes in human skin. J Soc Cosmet Chem. 1981;32:15–26.

    Google Scholar 

  16. Leveque JL, et al. In vivo studies of the evolution of physical properties of the human skin with age. Int J Dermatol. 1984;23(5):322–9.

    Article  CAS  PubMed  Google Scholar 

  17. Marks R, Nicholls S, King CS. Studies on isolated corneocytes. Int J Cosmet Sci. 1981;3(6):251–9.

    Article  CAS  PubMed  Google Scholar 

  18. Plewig G. Regional differences of cell sizes in the human stratum corneum. II. Effects of sex and age. J Invest Dermatol. 1970;54(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  19. Corcuff P, Leveque JL. Corneocyte changes after acute UV irradiation and chronic solar exposure. Photodermatol. 1988;5(3):110–5.

    CAS  PubMed  Google Scholar 

  20. Hermann S, Scheuber E, Plewig G. Exfoliative cytology: effects of seasons. In: Marks R, Plewig G, editors. Stratum corneum. Berlin: Springer; 1983. p. 181–5.

    Chapter  Google Scholar 

  21. Leveque J, et al. Influence of chronic sun exposure on some biophysical parameters of the human skin; an in vivo study. J Cutan Aging Cosmet Dermatol. 1988;1:123–7.

    Google Scholar 

  22. Ohta H, et al. Relationship between dermato-physiological changes and hormonal status in pre-, peri-, and postmenopausal women. Maturitas. 1998;30(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  23. Denda M, et al. Age- and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res. 1993;285(7):415–7.

    Article  CAS  PubMed  Google Scholar 

  24. Roshan S, Nader S, Orlander P. Review: ageing and hormones. Eur J Clin Invest. 1999;29(3):210–3.

    Article  CAS  PubMed  Google Scholar 

  25. Tazuke S, Khaw KT, Barrett-Connor E. Exogenous estrogen and endogenous sex hormones. Medicine (Baltimore). 1992;71(1):44–51.

    CAS  Google Scholar 

  26. Sauerbronn AV, et al. The effects of systemic hormonal replacement therapy on the skin of postmenopausal women. Int J Gynaecol Obstet. 2000;68(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  27. Ghadially R, et al. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Reed JT, Ghadially R, Elias PM. Skin type, but neither race nor gender, influence epidermal permeability barrier function. Arch Dermatol. 1995;131(10):1134–8.

    Article  CAS  PubMed  Google Scholar 

  29. Fluhr JW, et al. Differences in corneocyte surface area in pre- and post-menopausal women. Assessment with the noninvasive videomicroscopic imaging of corneocytes method (VIC) under basal conditions. Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:10–6.

    Article  PubMed  Google Scholar 

  30. Pierard GE, et al. Effect of hormone replacement therapy for menopause on the mechanical properties of skin. J Am Geriatr Soc. 1995;43(6):662–5.

    Article  CAS  PubMed  Google Scholar 

  31. Pierard-Franchimont C, et al. Skin water-holding capacity and transdermal estrogen therapy for menopause: a pilot study. Maturitas. 1995;22(2):151–4.

    Article  CAS  PubMed  Google Scholar 

  32. Guinot C, et al. Effect of hormonal replacement therapy on skin biophysical properties of menopausal women. Skin Res Technol. 2005;11(3):201–4.

    Article  PubMed  Google Scholar 

  33. Chen L, et al. The use of high-frequency diagnostic ultrasound to investigate the effect of hormone replacement therapy on skin thickness. Skin Res Technol. 2001;7(2):95–7.

    Article  CAS  PubMed  Google Scholar 

  34. Youn CS, et al. Effect of pregnancy and menopause on facial wrinkling in women. Acta Derm Venereol. 2003;83(6):419–24.

    Article  PubMed  Google Scholar 

  35. Batisse D, Giron F, Leveque JL. Capacitance imaging of the skin surface. Skin Res Technol. 2006;12(2):99–104.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvigor Darlenski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Darlenski, R., Berardesca, E., Fluhr, J.W. (2015). Corneocyte Size and Cell Renewal: Effects of Aging and Sex Hormones. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_36-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_36-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics