Advertisement

Pathology of Aging Skin

  • Qunshan Jia
  • J. Frank Nash
Living reference work entry

Abstract

Human skin is a dynamic complex organ functioning as both a physical and biochemical barrier to protect the human body from water loss and environmental insults while providing multiple life-sustaining physiological functions. Skin undergoes a chronological aging process accompanied by physical changes, clinical manifestations, and psychological consequences. At the level of epidermis, defects in stratum corneum integrity and subsequent barrier dysfunction following external insults are observed in aged humans. An increase in pH in the stratum corneum of aging skin may decrease the concentration of lipids leading to defects in stratum corneum homeostasis and epidermal barrier function. At the level of upper dermis, fragmentation and reduction in collagen and elastin as well as a collapse in fibroblast morphology underline the majority of the undesired dermal clinical manifestations including the loss of dermal mechanical tension resulting in skin laxity and fine wrinkles. Both intracellular factors including attack by reactive oxygen species, DNA telomere shortening, and damage to DNA repair enzymes and intercellular microenvironmental factors including breakdown of the extracellular matrix and microinflammation are considered important in the process of skin aging.

Keywords

Stratum Corneum Telomere Length Dermal Fibroblast Elastic Fiber Skin Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Waite LJ. The demographic faces of the elderly. Popul Dev Rev. 2004;30:3–16.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Fuchs E. Scratching the surface of skin development. Nature. 2007;445:834–42. doi:10.1038/nature05659.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Madison KC. Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol. 2003;121:231–41. doi:10.1046/j.1523-1747.2003.12359.x.PubMedCrossRefGoogle Scholar
  4. 4.
    Elias PM. The skin barrier as an innate immune element. Semin Immunopathol. 2007;29:3–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Menon GK. New insights into skin structure: scratching the surface. Adv Drug Deliv Rev. 2002;54 Suppl 1:S3–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Proksch E, Brandner JM, Jensen J-M. The skin: an indispensable barrier. Exp Dermatol. 2008;17:1063–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Matsuki M, Yamashita F, Ishida-Yamamoto A, Yamada K, Kinoshita C, Fushiki S, et al. Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci U S A. 1998;95:1044–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37:56–65. doi:10.1038/ng1493.PubMedGoogle Scholar
  9. 9.
    Macheleidt O, Kaiser HW, Sandhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol. 2002;119:166–73. doi:10.1046/j.1523-1747.2002.01833.x.PubMedCrossRefGoogle Scholar
  10. 10.
    Jackson SM, Wood LC, Lauer S, Taylor JM, Cooper AD, Elias PM, et al. Effect of cutaneous permeability barrier disruption on HMG-CoA reductase, LDL receptor, and apolipoprotein E mRNA levels in the epidermis of hairless mice. J Lipid Res. 1992;33:1307–14.PubMedGoogle Scholar
  11. 11.
    Proksch E, Feingold KR, Elias PM. Epidermal HMG CoA reductase activity in essential fatty acid deficiency: barrier requirements rather than eicosanoid generation regulate cholesterol synthesis. J Invest Dermatol. 1992;99:216–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Herrmann T, van der Hoeven F, Grone H-J, Stewart AF, Langbein L, Kaiser I, et al. Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J Cell Biol. 2003;161:1105–15. doi:10.1083/jcb.200207080.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Demerjian M, Hachem J-P, Tschachler E, Denecker G, Declercq W, Vandenabeele P, et al. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2. Am J Pathol. 2008;172:86–97. doi:10.2353/ajpath.2008.070161.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mine S, Fortunel NO, Pageon H, Asselineau D. Aging alters functionally human dermal papillary fibroblasts but not reticular fibroblasts: a new view of skin morphogenesis and aging. PLoS One. 2008;3:e4066. doi:10.1371/journal.pone.0004066.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lee D-Y, Cho K-H. The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Arch Dermatol Res. 2005;296:296–302. doi:10.1007/s00403-004-0529-5.PubMedCrossRefGoogle Scholar
  16. 16.
    Chong HC, Tan MJ, Philippe V, Tan SH, Tan CK, Ku CW, et al. Regulation of epithelial-mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. J Cell Biol. 2009;184:817–31. doi:10.1083/jcb.200809028.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Haschek WM, Rousseaux CG, Wallig MA. Fundamentals of toxicologic pathology. London: Academic; 2009.Google Scholar
  18. 18.
    Fore J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage. 2006;52:24–35; quiz 36–37.PubMedGoogle Scholar
  19. 19.
    Bos JD. The skin as an organ of immunity. Clin Exp Immunol. 1997;107 Suppl 1:3–5.PubMedGoogle Scholar
  20. 20.
    Strid J, Strobel S. Skin barrier dysfunction and systemic sensitization to allergens through the skin. Curr Drug Targets Inflamm Allergy. 2005;4:531–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugita K, Kabashima K, Atarashi K, Shimauchi T, Kobayashi M, Tokura Y. Innate immunity mediated by epidermal keratinocytes promotes acquired immunity involving Langerhans cells and T cells in the skin. Clin Exp Immunol. 2007;147:176–83. doi:10.1111/j.1365-2249.2006.03258.x.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Debenedictis C, Joubeh S, Zhang G, Barria M, Ghohestani RF. Immune functions of the skin. Clin Dermatol. 2001;19:573–85.PubMedCrossRefGoogle Scholar
  23. 23.
    Hikima T, Tojo K, Maibach HI. Skin metabolism in transdermal therapeutic systems. Skin Pharmacol Physiol. 2005;18:153–9. doi:10.1159/000085860.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith Pease CK, Basketter DA, Patlewicz GY. Contact allergy: the role of skin chemistry and metabolism. Clin Exp Dermatol. 2003;28:177–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Schepers RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev. 2009;33:205–12. doi:10.1016/j.neubiorev.2008.07.009.PubMedCrossRefGoogle Scholar
  26. 26.
    Baumann L. Skin ageing and its treatment. J Pathol. 2007;211:241–51. doi:10.1002/path.2098.PubMedCrossRefGoogle Scholar
  27. 27.
    Calleja-Agius J, Muscat-Baron Y, Brincat MP. Skin ageing. Menopause Int. 2007;13:60–4. doi:10.1258/175404507780796325.PubMedGoogle Scholar
  28. 28.
    Kappes UP. Skin ageing and wrinkles: clinical and photographic scoring. J Cosmet Dermatol. 2004;3:23–5. doi:10.1111/j.1473-2130.2004.00092.x.PubMedCrossRefGoogle Scholar
  29. 29.
    Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30:87–95. doi:10.1111/j.1468-2494.2007.00415.x.PubMedCrossRefGoogle Scholar
  30. 30.
    Whitton JT, Everall JD. The thickness of the epidermis. Br J Dermatol. 1973;89:467–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med. 2002;18:103–20. vii.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghadially R. Aging and the epidermal permeability barrier: implications for contact dermatitis. Am J Contact Dermat Off J Am Contact Dermat Soc. 1998;9:162–9.Google Scholar
  33. 33.
    Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95:2281–90. doi:10.1172/JCI117919.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Behne MJ, Barry NP, Hanson KM, Aronchik I, Clegg RW, Gratton E, et al. Neonatal development of the stratum corneum pH gradient: localization and mechanisms leading to emergence of optimal barrier function. J Invest Dermatol. 2003;120:998–1006.PubMedCrossRefGoogle Scholar
  35. 35.
    Fluhr JW, Mao-Qiang M, Brown BE, Hachem J-P, Moskowitz DG, Demerjian M, et al. Functional consequences of a neutral pH in neonatal rat stratum corneum. J Invest Dermatol. 2004;123:140–51. doi:10.1111/j.0022-202X.2004.22726.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Fluhr JW, Behne MJ, Brown BE, Moskowitz DG, Selden C, Mao-Qiang M, et al. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol. 2004;122:320–9. doi:10.1046/j.0022-202X.2003.00204.x.PubMedCrossRefGoogle Scholar
  37. 37.
    Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, et al. NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem. 2002;277:47399–406. doi:10.1074/jbc.M204759200.PubMedCrossRefGoogle Scholar
  38. 38.
    Choi E-H, Man M-Q, Xu P, Xin S, Liu Z, Crumrine DA, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127:2847–56. doi:10.1038/sj.jid.5700913.PubMedCrossRefGoogle Scholar
  39. 39.
    Hachem J-P, Behne M, Aronchik I, Demerjian M, Feingold KR, Elias PM, et al. Extracellular pH Controls NHE1 expression in epidermis and keratinocytes: implications for barrier repair. J Invest Dermatol. 2005;125:790–7. doi:10.1111/j.0022-202X.2005.23836.x.PubMedCrossRefGoogle Scholar
  40. 40.
    Fluhr JW, Man M-Q, Hachem J-P, Crumrine D, Mauro TM, Elias PM, et al. Topical peroxisome proliferator activated receptor activators accelerate postnatal stratum corneum acidification. J Invest Dermatol. 2009;129:365–74. doi:10.1038/jid.2008.218.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Stevenson S, Sharpe DT, Thornton MJ. Effects of oestrogen agonists on human dermal fibroblasts in an in vitro wounding assay. Exp Dermatol. 2009;18:988–90. doi:10.1111/j.1600-0625.2009.00864.x.PubMedCrossRefGoogle Scholar
  42. 42.
    Verdier-Sévrain S, Bonté F, Gilchrest B. Biology of estrogens in skin: implications for skin aging. Exp Dermatol. 2006;15:83–94. doi:10.1111/j.1600-0625.2005.00377.x.PubMedCrossRefGoogle Scholar
  43. 43.
    Brincat MP, Baron YM, Galea R. Estrogens and the skin. Climacteric J Int Menopause Soc. 2005;8:110–23. doi:10.1080/13697130500118100.CrossRefGoogle Scholar
  44. 44.
    Thornton MJ. The biological actions of estrogens on skin. Exp Dermatol. 2002;11:487–502.PubMedCrossRefGoogle Scholar
  45. 45.
    McCullough JL, Kelly KM. Prevention and treatment of skin aging. Ann N Y Acad Sci. 2006;1067:323–31. doi:10.1196/annals.1354.044.PubMedCrossRefGoogle Scholar
  46. 46.
    Besné I, Descombes C, Breton L. Effect of age and anatomical site on density of sensory innervation in human epidermis. Arch Dermatol. 2002;138:1445–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Holowatz LA, Thompson CS, Minson CT, Kenney WL. Mechanisms of acetylcholine-mediated vasodilatation in young and aged human skin. J Physiol. 2005;563:965–73. doi:10.1113/jphysiol.2004.080952.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Holowatz LA, Houghton BL, Wong BJ, Wilkins BW, Harding AW, Kenney WL, et al. Nitric oxide and attenuated reflex cutaneous vasodilation in aged skin. Am J Physiol Heart Circ Physiol. 2003;284:H1662–7. doi:10.1152/ajpheart.00871.2002.PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson CS, Kenney WL. Altered neurotransmitter control of reflex vasoconstriction in aged human skin. J Physiol. 2004;558:697–704. doi:10.1113/jphysiol.2004.065714.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Scremin G, Kenney WL. Aging and the skin blood flow response to the unloading of baroreceptors during heat and cold stress. J Appl Physiol Bethesda Md 1985. 2004;96:1019–25. doi:10.1152/japplphysiol.00928.2003.Google Scholar
  51. 51.
    Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron Oxf Engl 1993. 2004;35:155–9. doi:10.1016/j.micron.2003.11.002.Google Scholar
  52. 52.
    Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutat Res. 1991;256:45–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Boukamp P. Skin aging: a role for telomerase and telomere dynamics? Curr Mol Med. 2005;5:171–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Shariftabrizi A, Eller MS. Telomere homolog oligonucleotides and the skin: current status and future perspectives. Exp Dermatol. 2007;16:627–33. doi:10.1111/j.1600-0625.2007.00580.x.PubMedCrossRefGoogle Scholar
  55. 55.
    Sugimoto M, Yamashita R, Ueda M. Telomere length of the skin in association with chronological aging and photoaging. J Dermatol Sci. 2006;43:43–7. doi:10.1016/j.jdermsci.2006.02.004.PubMedCrossRefGoogle Scholar
  56. 56.
    Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. EMBO J. 2002;21:4338–48.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Blackburn EH. Switching and signaling at the telomere. Cell. 2001;106:661–73.PubMedCrossRefGoogle Scholar
  58. 58.
    Rufer N, Brümmendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999;190:157–67.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nakamura K-I, Izumiyama-Shimomura N, Sawabe M, Arai T, Aoyagi Y, Fujiwara M, et al. Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium. J Invest Dermatol. 2002;119:1014–9. doi:10.1046/j.1523-1747.2002.19523.x.PubMedCrossRefGoogle Scholar
  60. 60.
    Hazane F, Sauvaigo S, Douki T, Favier A, Beani J-C. Age-dependent DNA repair and cell cycle distribution of human skin fibroblasts in response to UVA irradiation. J Photochem Photobiol B. 2006;82:214–23. doi:10.1016/j.jphotobiol.2005.10.004.PubMedCrossRefGoogle Scholar
  61. 61.
    Sauvaigo S, Bonnet-Duquennoy M, Odin F, Hazane-Puch F, Lachmann N, Bonté F, et al. DNA repair capacities of cutaneous fibroblasts: effect of sun exposure, age and smoking on response to an acute oxidative stress. Br J Dermatol. 2007;157:26–32. doi:10.1111/j.1365-2133.2007.07890.x.PubMedCrossRefGoogle Scholar
  62. 62.
    Callaghan TM, Wilhelm K-P. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part I: cellular and molecular perspectives of skin ageing. Int J Cosmet Sci. 2008;30:313–22. doi:10.1111/j.1468-2494.2008.00454.x.PubMedCrossRefGoogle Scholar
  63. 63.
    Trouba KJ, Hamadeh HK, Amin RP, Germolec DR. Oxidative stress and its role in skin disease. Antioxid Redox Signal. 2002;4:665–73. doi:10.1089/15230860260220175.PubMedCrossRefGoogle Scholar
  64. 64.
    Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ. Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol. 2004;43:326–35. doi:10.1111/j.1365-4632.2004.02222.x.PubMedCrossRefGoogle Scholar
  65. 65.
    Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126:2565–75. doi:10.1038/sj.jid.5700340.PubMedCrossRefGoogle Scholar
  66. 66.
    Kohen R. Skin antioxidants: their role in aging and in oxidative stress – new approaches for their evaluation. Biomed Pharmacother. 1999;53:181–92. doi:10.1016/S0753-3322(99)80087-0.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaneko T, Tahara S, Taguchi T, Kondo H. Accumulation of oxidative DNA damage, 8-oxo-2′-deoxyguanosine, and change of repair systems during in vitro cellular aging of cultured human skin fibroblasts. Mutat Res. 2001;487:19–30.PubMedCrossRefGoogle Scholar
  68. 68.
    Meyer F, Fiala E, Westendorf J. Induction of 8-oxo-dGTPase activity in human lymphoid cells and normal fibroblasts by oxidative stress. Toxicology. 2000;146:83–92.PubMedCrossRefGoogle Scholar
  69. 69.
    Sivonová M, Tatarková Z, Duracková Z, Dobrota D, Lehotský J, Matáková T, et al. Relationship between antioxidant potential and oxidative damage to lipids, proteins and DNA in aged rats. Physiol Res Acad Sci Bohemoslov. 2007;56:757–64.Google Scholar
  70. 70.
    Tahara S, Matsuo M, Kaneko T. Age-related changes in oxidative damage to lipids and DNA in rat skin. Mech Ageing Dev. 2001;122:415–26.PubMedCrossRefGoogle Scholar
  71. 71.
    Lasch J, Schönfelder U, Walke M, Zellmer S, Beckert D. Oxidative damage of human skin lipids. Dependence of lipid peroxidation on sterol concentration. Biochim Biophys Acta. 1997;1349:171–81.PubMedCrossRefGoogle Scholar
  72. 72.
    Calleja-Agius J, Brincat M, Borg M. Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol. 2013;27:727–40. doi:10.1016/j.bpobgyn.2013.06.004.PubMedCrossRefGoogle Scholar
  73. 73.
    Fisher GJ, Varani J, Voorhees JJ. Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol. 2008;144:666–72. doi:10.1001/archderm.144.5.666.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Naylor EC, Watson REB, Sherratt MJ. Molecular aspects of skin ageing. Maturitas. 2011;69:249–56. doi:10.1016/j.maturitas.2011.04.011.PubMedCrossRefGoogle Scholar
  75. 75.
    Fleischmajer R, Utani A, MacDonald ED, Perlish JS, Pan TC, Chu ML, et al. Initiation of skin basement membrane formation at the epidermo-dermal interface involves assembly of laminins through binding to cell membrane receptors. J Cell Sci. 1998;111(Pt 14):1929–40.PubMedGoogle Scholar
  76. 76.
    Christiano AM, Anhalt G, Gibbons S, Bauer EA, Uitto J. Premature termination codons in the type VII collagen gene (COL7A1) underlie severe, mutilating recessive dystrophic epidermolysis bullosa. Genomics. 1994;21:160–8. doi:10.1006/geno.1994.1238.PubMedCrossRefGoogle Scholar
  77. 77.
    Bonta M, Daina L, Muţiu G. The process of ageing reflected by histological changes in the skin. Romanian J Morphol Embryol Rev Roum Morphol Embryol. 2013;54:797–804.Google Scholar
  78. 78.
    Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462–70.PubMedCrossRefGoogle Scholar
  79. 79.
    McAnulty RJ. Fibroblasts and myofibroblasts: their source, function and role in disease. Int J Biochem Cell Biol. 2007;39:666–71. doi:10.1016/j.biocel.2006.11.005.PubMedCrossRefGoogle Scholar
  80. 80.
    Varani J, Warner RL, Gharaee-Kermani M, Phan SH, Kang S, Chung JH, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114:480–6. doi:10.1046/j.1523-1747.2000.00902.x.PubMedCrossRefGoogle Scholar
  81. 81.
    Varani J, Dame MK, Rittie L, Fligiel SEG, Kang S, Fisher GJ, et al. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168:1861–8. doi:10.2353/ajpath.2006.051302.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Boraldi F, Annovi G, Tiozzo R, Sommer P, Quaglino D. Comparison of ex vivo and in vitro human fibroblast ageing models. Mech Ageing Dev. 2010;131:625–35. doi:10.1016/j.mad.2010.08.008.PubMedCrossRefGoogle Scholar
  83. 83.
    Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, et al. Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci U S A. 2011;108:4322–7. doi:10.1073/pnas.1014280108.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Vrhovski B, Weiss AS. Biochemistry of tropoelastin. Eur J Biochem FEBS. 1998;258:1–18.CrossRefGoogle Scholar
  85. 85.
    Sherratt MJ. Age-related tissue stiffening: cause and effect. Adv Wound Care. 2013;2:11–7. doi:10.1089/wound.2011.0328.CrossRefGoogle Scholar
  86. 86.
    Pageon H. Reaction of glycation and human skin: the effects on the skin and its components, reconstructed skin as a model. Pathol Biol (Paris). 2010;58:226–31. doi:10.1016/j.patbio.2009.09.009.CrossRefGoogle Scholar
  87. 87.
    Draelos ZD. Aging skin: the role of diet: facts and controversies. Clin Dermatol. 2013;31:701–6. doi:10.1016/j.clindermatol.2013.05.005.PubMedCrossRefGoogle Scholar
  88. 88.
    Park H-Y, Kim J-H, Jung M, Chung CH, Hasham R, Park CS, et al. A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp Dermatol. 2011;20:969–74. doi:10.1111/j.1600-0625.2011.01364.x.PubMedCrossRefGoogle Scholar
  89. 89.
    Dunn JA, Patrick JS, Thorpe SR, Baynes JW. Oxidation of glycated proteins: age-dependent accumulation of N epsilon-(carboxymethyl)lysine in lens proteins. Biochemistry (Mosc). 1989;28:9464–8.CrossRefGoogle Scholar
  90. 90.
    Gkogkolou P, Böhm M. Advanced glycation end products: key players in skin aging? Dermatoendocrinol. 2012;4:259–70. doi:10.4161/derm.22028.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Corstjens H, Dicanio D, Muizzuddin N, Neven A, Sparacio R, Declercq L, et al. Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp Gerontol. 2008;43:663–7. doi:10.1016/j.exger.2008.01.012.PubMedCrossRefGoogle Scholar
  92. 92.
    Crisan M, Taulescu M, Crisan D, Cosgarea R, Parvu A, Cãtoi C, et al. Expression of advanced glycation end-products on sun-exposed and non-exposed cutaneous sites during the ageing process in humans. PLoS One. 2013;8:e75003. doi:10.1371/journal.pone.0075003.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Okano Y, Masaki H, Sakurai H. Dysfunction of dermal fibroblasts induced by advanced glycation end-products (AGEs) and the contribution of a nonspecific interaction with cell membrane and AGEs. J Dermatol Sci. 2002;29:171–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Fisher GJ, Quan T, Purohit T, Shao Y, Cho MK, He T, et al. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am J Pathol. 2009;174:101–14. doi:10.2353/ajpath.2009.080599.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Qin Z, Voorhees JJ, Fisher GJ, Quan T. Age-associated reduction of cellular spreading/mechanical force up-regulates matrix metalloproteinase-1 expression and collagen fibril fragmentation via c-Jun/AP-1 in human dermal fibroblasts. Aging Cell. 2014;13:1028–37. doi:10.1111/acel.12265.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Xia W, Hammerberg C, Li Y, He T, Quan T, Voorhees JJ, et al. Expression of catalytically active matrix metalloproteinase-1 in dermal fibroblasts induces collagen fragmentation and functional alterations that resemble aged human skin. Aging Cell. 2013;12:661–71. doi:10.1111/acel.12089.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Quan T, Wang F, Shao Y, Rittié L, Xia W, Orringer JS, et al. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J Invest Dermatol. 2013;133:658–67. doi:10.1038/jid.2012.364.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009;1793:911–20. doi:10.1016/j.bbamcr.2009.01.012.PubMedCrossRefGoogle Scholar
  99. 99.
    Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4:E131–6. doi:10.1038/ncb0502-e131.PubMedCrossRefGoogle Scholar
  100. 100.
    Quan T, Little E, Quan H, Qin Z, Voorhees JJ, Fisher GJ. Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function. J Invest Dermatol. 2013;133:1362–6. doi:10.1038/jid.2012.509.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen Off Publ Wound Heal Soc Eur Tissue Repair Soc. 2005;13:7–12. doi:10.1111/j.1067-1927.2005.130102.x.Google Scholar
  102. 102.
    Wipff P-J, Rifkin DB, Meister J-J, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179:1311–23. doi:10.1083/jcb.200704042.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lindahl GE, Chambers RC, Papakrivopoulou J, Dawson SJ, Jacobsen MC, Bishop JE, et al. Activation of fibroblast procollagen alpha 1(I) transcription by mechanical strain is transforming growth factor-beta-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem. 2002;277:6153–61. doi:10.1074/jbc.M108966200.PubMedCrossRefGoogle Scholar
  104. 104.
    Quan T, Shao Y, He T, Voorhees JJ, Fisher GJ. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol. 2010;130:415–24. doi:10.1038/jid.2009.224.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Bennett MF, Robinson MK, Baron ED, Cooper KD. Skin immune systems and inflammation: protector of the skin or promoter of aging? J Investig Dermatol Symp Proc Soc Investig Dermatol Inc Eur Soc Dermatol Res. 2008;13:15–9. doi:10.1038/jidsymp.2008.3.CrossRefGoogle Scholar
  106. 106.
    Giacomoni PU, Rein G. A mechanistic model for the aging of human skin. Micron Oxf Engl 1993. 2004;35:179–84. doi:10.1016/j.micron.2003.11.004.Google Scholar
  107. 107.
    Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403. doi:10.1172/JCI118175.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Duca L, Floquet N, Alix AJP, Haye B, Debelle L. Elastin as a matrikine. Crit Rev Oncol Hematol. 2004;49:235–44. doi:10.1016/j.critrevonc.2003.09.007.PubMedCrossRefGoogle Scholar
  109. 109.
    Brassart B, Fuchs P, Huet E, Alix AJ, Wallach J, Tamburro AM, et al. Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem. 2001;276:5222–7. doi:10.1074/jbc.M003642200.PubMedCrossRefGoogle Scholar
  110. 110.
    Kajiya K, Kim YK, Kinemura Y, Kishimoto J, Chung JH. Structural alterations of the cutaneous vasculature in aged and in photoaged human skin in vivo. J Dermatol Sci. 2011;61:206–8. doi:10.1016/j.jdermsci.2010.12.005.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.The Procter & Gamble CompanyCentral Product SafetyCincinnatiUSA

Personalised recommendations