Impact of Dietary Supplements on Skin Aging

Living reference work entry

Abstract

Skin, known to be the largest organ, consists of epidermis and dermis. Any physiological change associated with age is ultimately reflected by a person’s skin. Two major factors responsible for premature aging are intrinsic, i.e., involvement of genes, and extrinsic that covers exposure of skin to ultraviolet (UV) radiation. UV rays induce the oxidative stress and consequently cause the loss of cellular regulation. Dietary nutriments may help the body to fight against signs of early aging as antioxidants and by regulating keratinocytes proliferation and differentiation. Main ingredients of these dietary supplements include several vitamins, minerals, phytochemicals, omega-3 fatty acids, amino acids, and probiotics. Vitamin A, C, D, and E assist in maintaining skin veracity. Zinc, copper, and selenium are the main minerals which are involved in sustenance of healthy skin. Phytochemicals consisting of flavonoids, terpenoids, and alkaloids with antibacterial, antifungal, and antioxidative property may benefit the texture and physiological parameters of skin delaying its aging. Amino acids like arginine, proline, ornithine, and glutamine alone as well as in combination support the healthy being of skin. The probiotic bacteria like Lactobacillus johnsonii and Lactobacillus plantarum commonly found in intestine aid in delaying aging by hydrating the skin as well as by showing protective effect on UV-exposed area. Though many clinical studies favor the role of dietary substances in prevention of early skin aging there is a need to cover the wider population and understand the various contributory factors.

Keywords

Ellagic Acid Epidermolysis Bullosa Skin Aging Seborrheic Dermatitis Skin Hydration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Farage MA, et al. Characteristics of the aging skin. Adv Wound Care Prog. 2012;2(1):5–10. doi:10.1089/wound.2011.0356.CrossRefGoogle Scholar
  2. 2.
    Ivi NP. Skin aging. Acta Dermatovenerol Alp Panonica Adriat. 2008;17(2):47–53.Google Scholar
  3. 3.
    Rinnerthaler M, et al. Oxidative stress in aging human skin. Biomolecules Prog. 2015;5:545–89. doi:10.3390/biom5020545.CrossRefGoogle Scholar
  4. 4.
    Dunn JH, et al. Psychological stress and skin aging: a review of possible mechanisms and potential therapies. Dermatol Online J. 2013;19(6):1.Google Scholar
  5. 5.
    Thornton MJ. Estrogen and aging skin. Dermato-Endocrinology. 2013;5(2):264–70.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Skoczyńska A, et al. New look at the role of progerin in skin aging. Przeglad Menopauzalny. 2015;14(1):53–8. doi:10.5114/pm.2015.49532.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Szyszkowska B, et al. The influence of selected ingredients of dietary supplements on skin condition. Postep Dermatol Alergol. 2014;31(3):174–81. doi:10.5114/pdia.2014.40919.CrossRefGoogle Scholar
  8. 8.
    Katta R, Desai SP. The role of dietary intervention in skin disease. J Clin Aesth Dermatol. 2014;7(7):46–51.Google Scholar
  9. 9.
    Danby FW. Nutrition and aging skin: sugar and glycation. Clin Dermatol. 2010;28(4):409–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Spravchikov N, et al. Glucose effects on skin keratinocytes. Diabetics. 2001;50:1627–35.Google Scholar
  11. 11.
    Park K. Role of micronutrients in skin health and function. Biomol Ther. 2015;23(3):207–17.CrossRefGoogle Scholar
  12. 12.
    Mukherjee S, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327–48.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee DD, et al. Retinoid-responsive transcriptional changes in epidermal keratinocytes. J Cell Physiol. 2009;220(2):427–39. doi:10.1002/jcp.21784.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Godic A, et al. The role of antioxidants in skin cancer prevention and treatment. Oxidative Med Cell Longev. 2014;2014:6. doi:10.1155/2014/860479.CrossRefGoogle Scholar
  15. 15.
    Pandel R, et al. Skin photo aging and the role of antioxidants in its prevention. Int Sch Res Not Dermatol. 2013;2013:11. Article ID 930164. doi:10.1155/2013/930164.Google Scholar
  16. 16.
    Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am. 2013;42(2):319–32. doi:10.1016/j.ecl.2013.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gombart AF, et al. Human cathelicidin antimicrobial peptide (CAMP) geneis a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1, 25-dihydroxyvitamin D3. Fed Am Soc Exp Biol. 2005;19:1067–77. doi:10.1096/fj.04-3284com.PubMedGoogle Scholar
  18. 18.
    Trémezaygues L, et al. 1,25-dihydroxyvitamin D3 protects human keratinocytes against UV-B-induced damage. Dermato-Endocrinologyi. 2009;1(4):239–45.CrossRefGoogle Scholar
  19. 19.
    Reichrath J. The role of vitamin D in skin aging. Dermato-Endocrinology. 2012;4(3):241–4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ricciarelli R, et al. Age-dependent increase of collagenase expression can be reduced by alpha-tocopherol via protein kinase C inhibition. Free Radic Biol Med. 1999;27(7–8):729–37. doi:10.1016/S0891-5849(99)00007-6.CrossRefPubMedGoogle Scholar
  21. 21.
    Makpol F, et al. Modulation of collagen synthesis and its gene expression in human skin fibroblasts by tocotrienol-rich fraction. Arch Med Sci. 2011;7(5):889–95. doi:10.5114/aoms.2011.25567.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jenkins G, et al. Wrinkle reduction in post-menopausal women consuming a novel oral supplement: a double-blind placebo-controlled randomized study. Int J Cosmet Sci. 2014;36:22–31. doi:10.1111/ics.12087.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mitchnick MA, et al. Microfine zinc oxide (Z-cote) as a photostable UVA/UVB sunblock agent. J Am Acad Dermatol. 1999;40(1):85–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Rafferty TS, et al. Differential expression of selenoproteins by human skin cells and protection by selenium from UVB-radiation-induced cell death. Biochemical J. 1998;332:231–6.CrossRefGoogle Scholar
  25. 25.
    Pickart L, et al. The human tripeptide GHK-Cu in prevention of oxidative stress and degenerative conditions of aging: implications for cognitive health. Oxid Med Cell Longev. 2012;2012:8. Article ID 324832, 8 p. doi:10.1155/2012/324832.Google Scholar
  26. 26.
    Murakami H, et al. Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice. Amino Acids. 2012;42:2481–9. doi:10.1007/s00726-011-1059-z.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Curi R, et al. Molecular mechanisms of glutamine action. J Cell Physiol. 2005;204:392–401.CrossRefPubMedGoogle Scholar
  28. 28.
    Shi HP, et al. Supplemental L-arginine enhances wound healing in diabetic rats. Wound Repair Regen. 2003;11(3):198–203.CrossRefPubMedGoogle Scholar
  29. 29.
    Shi HP, et al. Effect of supplemental ornithine on wound healing. J Surg Res. 2002;106(2):299–302.CrossRefPubMedGoogle Scholar
  30. 30.
    Badiu DL, et al. Amino acids from mytilus galloprovincialis (L.) and rapana venosa molluscs accelerate skin wounds healing via enhancement of dermal and epidermal neoformation. Protein J. 2010;29:81–92. doi:10.1007/s10930-009-9225-9.CrossRefPubMedGoogle Scholar
  31. 31.
    Gad MZ. Anti-aging effects of L-arginine. J Adv Res. 2010;1:169–77. doi:10.1016/j.jare.2010.05.001.CrossRefGoogle Scholar
  32. 32.
    Lang JA. Localized tyrosine or tetrahydrobiopterin supplementation corrects the age-related decline in cutaneous vasoconstriction. J Physiol. 2010;588(8):1361–8. doi:10.1113/jphysiol.2009.185694.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Holowatz LA, et al. L-arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skin. J Physiol. 2006;574(2):573–81. doi:10.1152/ajpheart.00648.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Holowatz LA, Thompson CS, Kenney WL. Acute ascorbate supplementation alone or combined with arginase inhibition augments reflex cutaneous vasodilation in aged human skin. Am J Physiol Heart Circ Physiol. 2006;291:H2965–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu S, et al. Effects of dimethylaminoethanol and compound amino acid on D-galactose induced skin aging model of rat. Sci World J. 2014;2014;7. Article ID 507351. doi:10.1155/2014/507351.Google Scholar
  36. 36.
    Mukherjee PK, et al. Bioactive compounds from natural resources against skin aging. Phytomedicine. 2011;19:64–73. doi:10.1016/j.phymed.2011.10.003.CrossRefPubMedGoogle Scholar
  37. 37.
    Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, anti-oxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302(2):71. doi:10.1007/s00403-009-1001-3.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gopaul R, et al. Biochemical investigation and gene analysis of equol: a plant and soy derived isoflavonoid with antiaging and antioxidant properties with potential human skin applications. Biofactors. 2012;38(1):44–52. doi:10.1002/biof.191.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim JH, et al. Anti-wrinkle activity of Platycarya strobilacea extract and its application as a cosmeceutical ingredient. J Cosmet Sci. 2010;61:211–23.PubMedGoogle Scholar
  40. 40.
    Ido Y, et al. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human Kerstinocytes. PLoS One. 2015;10(2):1–18. doi:10.1371/journal.pone.011534.CrossRefGoogle Scholar
  41. 41.
    Bala K, et al. Neuroprotective and anti-aging effects of curcumin in aged rat brain regions. Biogerontology. 2006;7:81–9. doi:10.1007/s10522-006-6495-x.CrossRefPubMedGoogle Scholar
  42. 42.
    Tanigawa T, et al. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med. 2014;14:133. doi:10.1186/1472-6882-14-133.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Anunciato TP, et al. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J Cosmet Dermatol. 2012;11(1):51–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Philips N, et al. Regulation of the extracellular matrix remodeling by lutein in dermal Wbroblasts, melanoma cells, and ultraviolet radiation exposed fibroblasts. Arch Dermatol Res. 2007;299:373–9. doi:10.1007/s00403-007-0779-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Philips N, et al. Beneficial regulation of matrixmetalloproteinases and their inhibitors, Wbrillar collagens and transforming growth factor by Polypodium leucotomos, directly or in dermal Wbroblasts, ultraviolet radiated Wbroblasts, and melanoma cells. Arch Dermatol Res. 2009;301:487–95. doi:10.1007/s00403-009-0950-x.CrossRefPubMedGoogle Scholar
  46. 46.
    Philips N, et al. Beneficial regulation of matrix metalloproteinases for skin health. Enzyme Res. 2011;2011;4. Article ID 427285. doi:10.4061/2011/427285.Google Scholar
  47. 47.
    Philips N, et al. Direct inhibition of elastase and matrixmetalloproteinases and stimulation of biosynthesis of fibrillar collagens, elastin, and fibrillins by xanthohumol. J Cosmet Sci. 2010;61(2):125–32.PubMedGoogle Scholar
  48. 48.
    Huang CC, et al. Protective effects of (_)-epicatechin-3-gallate on UVA-induced damage in HaCaT keratinocytes. Arch Dermatol Res. 2005;269:473–81.CrossRefGoogle Scholar
  49. 49.
    Assimopoulou AN. Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res. 2005;19:997–1000. doi:10.1002/ptr.1749.CrossRefPubMedGoogle Scholar
  50. 50.
    Kimura Y, Sumiyoshi M, Sakanaka M. Effects of ginsenoside Rb1 on skin changes. J Biomed Biotechnol. 2012;2012:11. Article ID 946242. doi:10.1155/2012/946242.Google Scholar
  51. 51.
    Polito F, et al. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br J Pharmacol. 2012;165:994–1005. doi:10.1111/j.1476-5381.2011.01619.x.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Elmhdwi MF, Attitalla IH. Antioxidant and free radical scavenging activity of essential oil extracted from Rosmarinus officinalis. J Biol Sci Opin. 2015;3(5):223–9. doi:10.7897/2321-6328.03549.CrossRefGoogle Scholar
  53. 53.
    Jones K, et al. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002;15(5):335–40. doi:10.1034/j.1600-0749.2002.02014.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Mamgain RK. Acne vulgaris and its treatment by indigenous drugs SK-34 (Purim) and SK-235 (Clarina). Antiseptic. 2000;97(3):76–8.Google Scholar
  55. 55.
    Chondrogianni N, et al. Anti-aging and rejuvenating effects of quercetin. Exp Gerontol. 2010;45:763–71. doi:10.1016/j.exger.2010.07.001. Epub 7 July 2010.CrossRefPubMedGoogle Scholar
  56. 56.
    Izumi T, et al. Oral intake of Soy Isoflavone Aglycone improves the aged skin of adult women. J Nutr Sci Vitaminol. 2007;53:57–62.CrossRefPubMedGoogle Scholar
  57. 57.
    Hewage SRKM, et al. Galangin (3, 5, 7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress. Biomol Ther. 2015;23(2):165–73.CrossRefGoogle Scholar
  58. 58.
    Guéniche A, et al. Probiotics for photoprotection. Dermato-Endocrinology. 2009;1(5):275–9.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee DE, et al. Clinical evidence of effects 1 of Lactobacillus plantarum HY7714 on skin aging: a randomized, double blind, placebo-controlled study. J Microbiol Biotechnol. 2015;25(12):2160–8. doi:10.4014/jmb.1509.09021.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim HM, et al. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photo aging. J Microbiol Biotechnol. 2014;24(11):1583–91. doi:10.4014/jmb.1406.06038.PubMedGoogle Scholar
  61. 61.
    Pezdirc K, et al. Can dietary intake influence perception of and measured appearance? A systematic review. Nutr Res. 2015;35(3):175–97. doi:10.1016/j.nutres.2014.12.002.CrossRefPubMedGoogle Scholar
  62. 62.
    Cosgrove MC, et al. Dietary nutrient intakes and skin-aging appearance among middle aged American women. Am J Clin Nutr. 2007;86(4):1225–31.PubMedGoogle Scholar
  63. 63.
    Bouilly-Gauthier D, et al. Clinical evidence of benefits of a diatery supplement containing probiotics and carotenoids on ultraviolet- induced skin damage. Br J Dermatol. 2010;163(3):536–43. doi:10.1111/j.1365-2133.2010.09888.x.CrossRefPubMedGoogle Scholar
  64. 64.
    Chiu AE, et al. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photo aging skin. Dermatol Surg. 2005;31:855–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Dayan SH, et al. A phase 2, double-blind, randomized, placebo-controlled trial of a novel nutritional supplement product to promote healthy skin. J Drugs Dermatol. 2011;10(10):1106–14.PubMedGoogle Scholar
  66. 66.
    Skovgaard GR, et al. Effect of a novel dietary supplement on skin aging in post-menopausal women. Eur J Clin Nutr. 2006;60(10):1201–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Udompataikul M, et al. An oral nutraceuticals containing antioxidant, minerals and glycosaminoglycans improves skin roughness and fine wrinkles. Int J Cosmet Sci. 2009;31(6):427–35.CrossRefPubMedGoogle Scholar
  68. 68.
    Cho S, et al. Red ginseng root extract mixed with Torilus fructus and Corni fructus improves wrinkles and increase type I procollagen synthesis in human skin: a randomized, double-blind, placebo-controlled study. J Med Food. 2009;12(6):1252–9. doi:10.1089/jmf.2008.1390.CrossRefPubMedGoogle Scholar
  69. 69.
    Cho S, et al. High dose squalene ingestion increases type I procollagen and decreases ultraviolet induced DNA damage in human skin in vivo but is associated with transient adverse effects. Clin Exp Dermatol. 2009;34(4):500–8. doi:10.1111/j.1365-2230.2008.03133.x.CrossRefPubMedGoogle Scholar
  70. 70.
    Mastaloudis A, Wood SM. Age-related changes in cellular protection, purification, and inflammation-related gene expression: role of dietary phytonutrient. Ann N Y Acad Sci. 2012;1259:112–20. doi:10.1111/j.1749-6632.2012.06610.x.CrossRefPubMedGoogle Scholar
  71. 71.
    McElwee JJ, et al. Evolutionary conservation of regulated longevity assurance mechanisms. Genome Biol. 2007;8(7):R132. doi:10.1186/gb-2007-8-7-r132.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sharma SD, et al. Dietary grape seed proanthocyanidins inhibit UVB-induced oxidative stress and activation of mitogen-activated protein kinases and nuclear factor-KB signaling in in vivo SKH-1 hairless mice. Mol Cancer Ther. 2007;6(3):995–1005.CrossRefPubMedGoogle Scholar
  73. 73.
    Vayalil PK, et al. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis. 2003;24(5):927–36. doi:10.1093/carcin/bgg025.CrossRefPubMedGoogle Scholar
  74. 74.
    Meeran SM, et al. Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. J Investig Dermatol. 2009;129(5):1258–70. doi:10.1038/jid.2008.354.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • U.L. Raj
    • 1
  • G. Sharma
    • 1
  • S. Dang
    • 1
  • S. Gupta
    • 1
  • R. Gabrani
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations