Advertisement

Resetting Skin Genome Back to Health Naturally with GHK

  • Loren Pickart
  • Jessica Michelle Vasquez-Soltero
  • Anna Margolina
Living reference work entry

Abstract

The copper-binding tripeptide GHK (glycyl-l-histidyl-l-lysine) is a naturally occurring plasma peptide widely used in skin care products. It is especially popular in antiaging cosmetic formulations due to its various and well-established positive biological effects on aging skin. It has been established that GHK-Cu improves wound healing and tissue regeneration and stimulates collagen and decorin production. GHK-Cu also supports angiogenesis and nerve outgrowth, improves the biological condition of aging skin and hair and possesses DNA repair, antioxidant, and anti-inflammatory effects. In addition, it increases cellular stemness and secretion of trophic factors by mesenchymal stem cells. GHK’s antioxidant actions have been demonstrated in vitro and in animal studies. They include blocking the formation of reactive oxygen and carbonyl species, detoxifying toxic products of lipid peroxidation such as acrolein, protecting keratinocytes from lethal UVB radiation, and blocking hepatic damage by dichloromethane radicals. In recent studies, GHK has also been found to switch cellular gene expression from a diseased state to a healthier state for certain cancers and for chronic obstructive pulmonary disease (COPD). The human gene expression actions provide a unique view of the complex and intricate gene actions underlying visible changes in human skin. This chapter reviews biological and gene data related to the positive antiaging effects of GHK on human skin.

Keywords

Copper peptides GHK Glycyl-l-histidyl-l-lysine Aging skin Skin repair Wound healing Fibroblasts Gene profiling COPD Cancer DNA repair Antioxidant Reactive oxygen species The connectivity map Gene pattern Ubiquitin proteasome system Fibrinogen Stem cells Antiaging cosmetics Copper 

References

  1. 1.
    Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG. Saliva and growth factors: the fountain of youth resides in us all. J Dent Res. 1995;74:1826–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Pilgeram LO, Pickart L, Bandi Z, Bell O. FFA/Albumin – a function of thrombogenesis and aging. Fed Proc. 1966;25:619.Google Scholar
  3. 3.
    Pilgeram LO, Pickart LR. Control of fibrinogen biosynthesis: the role of free fatty acid. J Atheroscler Res. 1968;8:155–66.CrossRefPubMedGoogle Scholar
  4. 4.
    Pickart L. Fat metabolism, the fibrinogen/fibrinolytic system and blood flow: new potentials for the pharmacological treatment of coronary heart disease. Pharmacology. 1981;23:271–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Pickart L. A tripeptide from human serum which enhances the growth of neoplastic hepatocytes and the survival of normal hepatocytes. San Francisco: University of California; 1973.Google Scholar
  6. 6.
    Pickart L, Margolina A. Anti-aging activity of the GHK peptide – the skin and beyond. J Aging Res Clin Pract. 2012;1:13–6.Google Scholar
  7. 7.
    Pickart L. The human tri-peptide GHK and tissue remodeling. J Biomater Sci Polym Ed. 2008;19:969–88. doi:10.1163/156856208784909435.CrossRefPubMedGoogle Scholar
  8. 8.
    Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007;7:54–60. doi:10.1038/nrc2044.CrossRefPubMedGoogle Scholar
  9. 9.
    Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, di Bernardo D. Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci U S A. 2010;107:14621–6. doi:10.1073/pnas.1000138107.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Farage MA, Miller KW, Elsner P, Maibach HI. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci. 2008;30:87–95. doi:10.1111/j.1468-2494.2007.00415.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Maquart F, Pickart L, Laurent M, Gillery P, Monboisse J, Borel J. Stimulation of collagen synthesis in fibroblast cultures by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. FEBS Lett. 1988;238:343–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Simeon A, Monier F, Emonard H, Gillery P, Birembaut P, Hornebeck W, Maquart F. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. J Invest Dermatol. 1999;112:957–64. doi:10.1046/j.1523-1747.1999.00606.x.CrossRefPubMedGoogle Scholar
  13. 13.
    Simeon A, Emonard H, Hornebeck W, Maquart F. The tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures. Life Sci. 2000;67:2257–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Simeon A, Wegrowski Y, Bontemps Y, Maquart F. Expression of glycosaminoglycans and small proteoglycans in wounds: modulation by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu(2+). J Invest Dermatol. 2000;115:962–8. doi:10.1046/j.1523-1747.2000.00166.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Wegrowski Y, Maquart F, Borel J. Stimulation of sulfated glycosaminoglycan synthesis by the tripeptide-copper complex glycyl-l-histidyl-l-lysine-Cu2+. Life Sci. 1992;51:1049–56.CrossRefPubMedGoogle Scholar
  16. 16.
    Buffoni F, Pino R, Dal Pozzo A. Effect of tripeptide-copper complexes on the process of skin wound healing and on cultured fibroblasts. Arch Int Pharmacodyn Ther. 1995;330:345–60.PubMedGoogle Scholar
  17. 17.
    Cangul IT, Gul NY, Topal A, Yilmaz R. Evaluation of the effects of topical tripeptide-copper complex and zinc oxide on open-wound healing in rabbits. Vet Dermatol. 2006;17:417–23. doi:10.1111/j.1365-3164.2006.00551.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Gul NY, Topal A, Cangul IT, Yanik K. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits. Vet Dermatol. 2008;19:7–14. doi:10.1111/j.1365-3164.2007.00647.x.PubMedGoogle Scholar
  19. 19.
    Arul V, Gopinath D, Gomathi K, Jayakumar R. Biotinylated GHK peptide incorporated collagenous matrix: a novel biomaterial for dermal wound healing in rats. J Biomed Mater Res B Appl Biomater. 2005;73:383–91. doi:10.1002/jbm.b.30246.CrossRefPubMedGoogle Scholar
  20. 20.
    Arul V, Kartha R, Jayakumar R. A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices. Life Sci. 2007;80:275–84. doi:10.1016/j.lfs.2006.09.018.CrossRefPubMedGoogle Scholar
  21. 21.
    Canapp SJ, Farese J, Schultz G, Gowda S, Ishak A, Swaim S, Vangilder J, Lee-Ambrose L, Martin F. The effect of topical tripeptide-copper complex on healing of ischemic open wounds. Vet Surg. 2003;32:515–23. doi:10.1053/jvet.2003.50070.CrossRefPubMedGoogle Scholar
  22. 22.
    Huang P, Huang Y, Su M, Yang T, Huang J, Jiang C. In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomed Laser Surg. 2007;25:183–90. doi:10.1089/pho.2007.2062.CrossRefPubMedGoogle Scholar
  23. 23.
    Pollard J, Quan S, Kang T, Koch R. Effects of copper tripeptide on the growth and expression of growth factors by normal and irradiated fibroblasts. Arch Facial Plast Surg. 2005;7:27–31. doi:10.1001/archfaci.7.1.27.CrossRefPubMedGoogle Scholar
  24. 24.
    Ohyama M. Hair follicle bulge: a fascinating reservoir of epithelial stem cells. J Dermatol Sci. 2007;46:81–9. doi:10.1016/j.jdermsci.2006.12.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Trachy R, Fors T, Pickart L, Uno H. The hair follicle-stimulating properties of peptide copper complexes. Results in C3H mice. Ann N Y Acad Sci. 1991;642:468–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Godet D, Marie P. Effects of the tripeptide glycyl-l-histidyl-l-lysine copper complex on osteoblastic cell spreading, attachment and phenotype. Cell Mol Biol (Noisy-le-Grand). 1995;41:1081–91.Google Scholar
  27. 27.
    Peled T, Fibach E, Treves A (2005) Methods of controlling proliferation and differentiation of stem and progenitor cells. This is U.S. Patent 6,962,698.Google Scholar
  28. 28.
    Kang Y, Choi H, Na J, Huh C, Kim M, Youn S, Kim K, Park K. Copper-GHK increases integrin expression and p63 positivity by keratinocytes. Arch Dermatol Res. 2009;301:301–6. doi:10.1007/s00403-009-0942-x.CrossRefPubMedGoogle Scholar
  29. 29.
    Jose S, Hughbanks ML, Binder BY, Ingavle GC, Leach JK. Enhanced trophic factor secretion by mesenchymal stem/stromal cells with Glycine-Histidine-Lysine (GHK)-modified alginate hydrogels. Acta Biomater. 2014;10:1955–64. doi:10.1016/j.actbio.2014.01.020.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Uno H, Kurata S. Chemical agents and peptides affect hair growth. J Invest Dermatol. 1993;101:143S–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Perez-Meza D, Leavitt M, Trachy R. Clinical evaluation of GraftCyte moist dressings on hair graft viability and quality of healing. Int J Cosmetic Surg. 1998;6:80–4.Google Scholar
  32. 32.
    Thomas CE. The influence of medium components on Cu(2+)-dependent oxidation of low-density lipoproteins and its sensitivity to superoxide dismutase. Biochim Biophys Acta. 1992;1128:50–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Beretta G, Arlandini E, Artali R, Anton JM, Maffei Facino R. Acrolein sequestering ability of the endogenous tripeptide glycyl-histidyl-lysine (GHK): characterization of conjugation products by ESI-MSn and theoretical calculations. J Pharm Biomed Anal. 2008;47:596–602. doi:10.1016/j.jpba.2008.02.012.CrossRefPubMedGoogle Scholar
  34. 34.
    Beretta G, Artali R, Regazzoni L, Panigati M, Facino RM. Glycyl-histidyl-lysine (GHK) is a quencher of alpha, beta-4-hydroxy-trans-2-nonenal: a comparison with carnosine. insights into the mechanism of reaction by electrospray ionization mass spectrometry, 1H NMR, and computational techniques. Chem Res Toxicol. 2007;20:1309–14. doi:10.1021/tx700185s.CrossRefPubMedGoogle Scholar
  35. 35.
    Cebrian J, Messeguer A, Facino R, Garcia Anton J. New anti-RNS and -RCS products for cosmetic treatment. Int J Cosmet Sci. 2005;27:271–8. doi:10.1111/j.1467-2494.2005.00279.x.CrossRefPubMedGoogle Scholar
  36. 36.
    Smakhtin Mi, Konoplia A, Sever’ianova L, Shveinov I. Pharmacological correction of immuno-metabolic disorders with the peptide Gly-His-Lys in hepatic damage induced by tetrachloromethane. Patol Fiziol Eksp Ter Russ. 2003:19–21. http://www.ncbi.nlm.nih.gov/pubmed/12838768.
  37. 37.
    Cherdakov VY, Smakhtin MY, Dubrovin GM, Dudka VT, Bobyntsev II. Synergetic antioxidant and reparative action of thymogen, dalargin and peptide Gly-His-Lys in tubular bone fractures. Exp Biol Med. 2010;4:15–20.Google Scholar
  38. 38.
    Miller DM, DeSilva D, Pickart L, Aust SD. Effects of glycyl-histidyl-lysyl chelated Cu(II) on ferritin dependent lipid peroxidation. Adv Exp Med Biol. 1990;264:79–84.CrossRefPubMedGoogle Scholar
  39. 39.
    Hong Y, Downey T, Eu K, Koh P, Cheah P. A “metastasis-prone” signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics. Clin Exp Metastasis. 2010;27:83–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Campbell JD, McDonough JE, Zeskind JE, Hackett TL, Pechkovsky DV, Brandsma CA, Suzuki M, Gosselink JV, Liu G, Alekseyev YO, Xiao J, Zhang X, Hayashi S, Cooper JD, Timens W, Postma DS, Knight DA, Marc LE, James HC, Avrum S. A gene expression signature of emphysema-related lung destruction and its reversal by the tripeptide GHK. Genome Med. 2012;4:67. doi:10.1186/gm368.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Pickart L, Vasquez-Soltero JM, Margolina A. GHK and DNA: resetting the human genome to health. BioMed Res Int. 2014;2014:151479. doi:10.1155/2014/151479.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Szarc vel Szic K, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015;7:33. doi:10.1186/s13148-015-0068-2.CrossRefPubMedGoogle Scholar
  43. 43.
    Kaliman P, Alvarez-Lopez MJ, Cosin-Tomas M, Rosenkranz MA, Lutz A, Davidson RJ. Rapid changes in histone deacetylases and inflammatory gene expression in expert meditators. Psychoneuroendocrinology. 2014;40:96–107. doi:10.1016/j.psyneuen.2013.11.004.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Pickart LR, Thaler MM. Fatty acids, fibrinogen and blood flow: a general mechanism for hyperfibrinogenemia and its pathologic consequences. Med Hypotheses. 1980;6:545–57.CrossRefPubMedGoogle Scholar
  45. 45.
    Carty CL, Heagerty P, Heckbert SR, Jarvik GP, Lange LA, Cushman M, Tracy RP, Reiner AP. Interaction between fibrinogen and IL-6 genetic variants and associations with cardiovascular disease risk in the Cardiovascular Health Study. Ann Hum Genet. 2010;74:1–10. doi:10.1111/j.1469-1809.2009.00551.x.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Pickart L, Vasquez-Soltero JM, Margolina A. GHK-Cu may prevent oxidative stress in skin by regulating copper and modifying expression of numerous antioxidant genes. Cosmetics. 2015;2:236–47.CrossRefGoogle Scholar
  47. 47.
    Matalka LE, Ford A, Unlap MT. The tripeptide, GHK, induces programmed cell death in SH-SY5Y neuroblastoma cells. J Biotechnol Biomater. 2012;2:1–4. doi:10.4172/2155-952X.1000144.Google Scholar
  48. 48.
    Pickart L, Vasquez-Soltero JM, Pickart FD, Majnarich J. GHK, the human skin remodeling peptide, induces anti-cancer expression of numerous caspase, growth regulatory, and DNA repair genes. J Anal Oncol. 2014;3:79–87.CrossRefGoogle Scholar
  49. 49.
    Tang XH, Gudas LJ. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol. 2011;6:345–64. doi:10.1146/annurev-pathol-011110-130303.CrossRefPubMedGoogle Scholar
  50. 50.
    Xie L, Wang W. Weight control and cancer preventive mechanisms: role of insulin growth factor-1-mediated signaling pathways. Exp Biol Med (Maywood). 2013;238:127–32. doi:10.1177/1535370213477602.CrossRefGoogle Scholar
  51. 51.
    Imbert I, Gondran C, Oberto G, Cucumel K, Dal Farra C, Domloge N. Maintenance of the ubiquitin-proteasome system activity correlates with visible skin benefits. Int J Cosmet Sci. 2010;32:446–57. doi:10.1111/j.1468-2494.2010.00575.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Mazurowska L, Mojski M. Biological activities of selected peptides: skin penetration ability of copper complexes with peptides. J Cosmet Sci. 2008;59:59–69.PubMedGoogle Scholar
  53. 53.
    Mazurowska L, Mojski M. ESI-MS study of the mechanism of glycyl-l-histidyl-l-lysine-Cu(II) complex transport through model membrane of stratum corneum. Talanta. 2007;72:650–4. doi:10.1016/j.talanta.2006.11.034.CrossRefPubMedGoogle Scholar
  54. 54.
    Hostynek J, Dreher F, Maibach H. Human skin penetration of a copper tripeptide in vitro as a function of skin layer. Inflamm Res. 2011;60:79–86.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Hostynek J, Dreher F, Maibach H. Human skin retention and penetration of a copper tripeptide in vitro as function of skin layer towards anti-inflammatory therapy. Inflamm Res. 2010;59:983–8.PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Gorouhi F, Maibach HI. Role of topical peptides in preventing or treating aged skin. Int J Cosmet Sci. 2009;31:327–45. doi:10.1111/j.1468-2494.2009.00490.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Abdulghani A, Sherr A, Shirin S, Solodkina G, Tapia E, Wolf B, Gottlieb A. Effects of topical creams containing vitamin C, a copper-binding peptide cream and melatonin compared with tretinoin on the ultrastructure of normal skin – a pilot clinical, histologic, and ultrastructural study. Disease Manag Clin Outcomes. 1998;1:136–41.CrossRefGoogle Scholar
  58. 58.
    Leyden J, Stephens T, Finkey M, Appa Y, Barkovic S. Skin care benefits of copper peptide containing facial cream. New Orleans, LA: American Academy of Dermatology; 2002.Google Scholar
  59. 59.
    Leyden J, Stephens T, Finkey M, Barkovic S. Skin care benefits of copper peptide containing eye creams. New Orleans, LA: American Academy of Dermatology; 2002.Google Scholar
  60. 60.
    Finkley M, Appa Y, Bhandarkar S. Copper peptide and skin. In: Elsner P, Maibach H, editors. Cosmeceuticals and active cosmetics. Drugs versus cosmetics. 2nd ed. New York: Marcel Dekker; 2005. p. 549–63.Google Scholar
  61. 61.
    Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9:1489–503. doi:10.1517/17425247.2012.735658.CrossRefPubMedGoogle Scholar
  62. 62.
    Li P, Nielsen HM, Mullertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin Drug Deliv. 2012;9:1289–304. doi:10.1517/17425247.2012.717068.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Loren Pickart
    • 1
  • Jessica Michelle Vasquez-Soltero
    • 1
  • Anna Margolina
    • 1
  1. 1.Research & DevelopmentSkin BiologyBellevueUSA

Personalised recommendations