Skip to main content

Sleep and Aging Skin

Abstract

Aging is a process that is universal and commonly outwardly manifested on the skin and often most significantly noticed on the skin. The prevention of skin aging is currently a multibillion dollar industry with progressive rapid expansion and continues to expand. Intact sleep and circadian rhythm regulation is known to have protective effects against systemic inflammation, oxidative stress, hormone dysregulation, DNA damage, and other variables that contribute to aging. This chapter is focused upon the examination of factors that relate sleep to skin aging. To dissect this relationship, it is necessary to recognize the definitions of adequate sleep quality and how it is assessed. Sleep occurs in alternating cycles of NREM sleep and REM sleep and disruption can decrease sleep quality. In fact, here are over 90 sleep disorders characterized by the International Classification of Sleep Disorders. Various tools in our armamentarium can assess sleep quality and identify sleep disorders including subjective measures collected from questionnaires and objective sleep measures gleaned from polysomnography. Sleep helps regulate physiological hormone levels and metabolism. When quality sleep is disrupted, these hormone levels become abnormal and cause aberrant metabolism and increased stress on the body. Some of the major hormones regulated by sleep are cortisol, glucose, and melatonin. Furthermore, sleep deprivation enhances inflammation, increased DNA damage, and decreased DNA repair; oxidative stress and emerging data implicate sleep disruption in carcinogenic risk. These adverse pathophysiologic consequences may contribute to signs of aging such as wrinkling and alterations in pigmentation. Biologic plausibility of these underlying mechanisms and available data identifying sleep disruption as a factor compromising skin health suggest that it is important to consider methods of improving sleep quality as part of maintaining a healthy skin, in order to minimize or delay such effects.

Keywords

  • Sleep
  • Skin
  • Aging
  • Metabolism
  • Repair
  • Oxidative stress
  • Sleep quality

This is a preview of subscription content, access via your institution.

References

  1. WGBH Educational Foundation. Division of sleep medicine at Harvard Medical School: the characteristics of sleep. 2007. http://healthysleep.med.harvard.edu/healthy/science/what/characteristics

  2. National Sleep Foundation. National Sleep Foundation: sleep-wake cycle: its physiology and impact on health. 2006. http://sleepfoundation.org/sites/default/files/SleepWakeCycle.pdf

  3. Buysse D, Reynolds C, Monk T, Berman S, Kupfer D. The Pittsburgh Sleep Quality Index (PSQI): a new instrument for psychiatric research and practice. Psychiatry Res. 1989;28(2):193–213.

    CrossRef  CAS  PubMed  Google Scholar 

  4. Kushida C, Littner M, Morgenthaler T, et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep. 2005;28:499–521.

    PubMed  Google Scholar 

  5. Sadeh A, Sharkey K, Carskadon M. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17:201–7.

    CAS  PubMed  Google Scholar 

  6. Poljšak B, Dahmane R, Godić A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat. 2012;21:33–6. doi:10.2478/v10162-012-0009-0.

    PubMed  Google Scholar 

  7. Sharma S, Kavuru M. Sleep and metabolism: an overview. Int J Endocrinol. 2010. doi:10.1155/2010/270832.

    Google Scholar 

  8. Kim TW, Jeong J, Hong S. The impact of sleep and circadian disturbance on hormones and metabolism. Int J Endocrinol. 2015. doi:10.1155/2015/591729.

    Google Scholar 

  9. Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20(10):865–70.

    CAS  PubMed  Google Scholar 

  10. Kreiger DT. Rhythms of acth and corticosteroid secretion in health and disease, and their experimental modification. J Steroid Biochem. 1975;6(5):785–91.

    CrossRef  Google Scholar 

  11. Chung S, Son GH, Kim K. Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim Biophys Acta. 2011;1812(5):581–91. doi:10.1016/j.bbadis.2011.02.003.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Mirescu C, Peters JD, Noiman L, Gould E. Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci. 2006;103(50):19170–5.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  13. Lin TK, et al. Paradoxical benefits of psychological stress in inflammatory dermatoses models are glucocorticoid mediated. J Invest Dermatol. 2014;134(12):2890–7. doi:10.1038/jid.2014.265.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  14. Choi EH, et al. Mechanisms by which psychologic stress alters cutaneous permeability barrier homeostasis and stratum corneum integrity. J Invest Dermatol. 2005;124(3):587–95.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Kahan V, Andersen ML, Tomimori J, Tufik S. Can poor sleep affect skin integrity? Med Hypotheses. 2010;75(6):535–7. doi:10.1016/j.mehy.2010.07.018.

    CrossRef  CAS  PubMed  Google Scholar 

  16. Goldberg GR, Prentice AM, Davies HL, Murgatroyd PR. Overnight and basal metabolic rates in men and women. Eur J Clin Nutr. 1988;42(2):137–44.

    CAS  PubMed  Google Scholar 

  17. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Spravchikov N, et al. Glucose effects on skin keratinocytes: implications for diabetes skin complications. Diabetes. 2001;50(7):1627–35.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Hehenberger K, Heilborn JD, Brismar K, Hansson A. Inhibited proliferation of fibroblasts derived from chronic diabetic wounds and normal dermal fibroblasts treated with high glucose is associated with increased formation of l-lactate. Wound Repair Regen. 1998;6:135–41.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Gerstein A, et al. Wound healing and aging. Dermatol Clin. 1993;11(4):749–57.

    CAS  PubMed  Google Scholar 

  21. Gandarillas A. Epidermal differentiation, apoptosis, and senescence: common pathways? Exp Gerontol. 2000;35(1):53–62.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Slominski A, et al. Melatonin in the skin: synthesis, metabolism and functions. Trends Endocrinol Metab. 2008;19(1):17–24.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Slominski A, et al. On the role of melatonin in skin physiology and pathology. Endocrine. 2005;27(2):137–48.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  24. Eşrefoğlu M, et al. Potent therapeutic effect of melatonin on aging skin in pinealectomized rats. J Pineal Res. 2005;39(3):231–7.

    CrossRef  PubMed  Google Scholar 

  25. Kleszczynski K, Fischer TW. Melatonin and human skin aging. Dermatoendocrinology. 2012;4(3):245–52. doi:10.4161/derm.22344.

    CrossRef  CAS  Google Scholar 

  26. Reiter RJ, et al. Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med. 2012;44(6):564–77. doi:10.3109/07853890.2011.586365.

    CrossRef  CAS  PubMed  Google Scholar 

  27. McIntyre IM, et al. Human melatonin suppression by light is intensity dependent. J Pineal Res. 1989;6(2):149–56.

    CrossRef  CAS  PubMed  Google Scholar 

  28. Oyetakin-White P, et al. Does poor sleep quality affect skin ageing? Clin Exp Dermatol. 2015;40(1):17–22. doi:10.1111/ced.12455.

    CrossRef  CAS  PubMed  Google Scholar 

  29. Vgontzas AN, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):2119–26.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Everson CA, et al. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep. 2014;37(12):1929–40. doi:10.5665/sleep.4244.

    PubMed Central  PubMed  Google Scholar 

  31. Collis SJ, Boulton SJ. Emerging links between the biological clock and the DNA damage response. Chromosoma. 2007;116(4):331–9.

    CrossRef  CAS  PubMed  Google Scholar 

  32. Villafuerte G, et al. Sleep deprivation and oxidative stress in animal models: a systematic review. Oxid Med Cell Longevity. 2015. doi:10.1155/2015/234952.

    Google Scholar 

  33. Anafi RC, et al. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues. BMC Genomics. 2013;14:362. doi:10.1186/1471-2164-14-362.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  34. Irwin MR, Carrillo C, Olmstead R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav Immun. 2010;24(1):54–7. doi:10.1016/j.bbi.2009.06.001.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ataie-Kachoie P, et al. Gene of the month: interleukin 6 (IL-6). J Clin Pathol. 2014;67(11):932–7. doi:10.1136/jclinpath-2014-202493.

    CrossRef  CAS  PubMed  Google Scholar 

  36. Bradshaw RA, Dennis EA. Handbook of cell signaling. 2nd ed. Oxford: Academic; 2009. p. 265–75.

    Google Scholar 

  37. Li WH, et al. IL-11, IL-1α, IL-6, and TNF-α are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo. J Dermatol Sci. 2013;71(1):58–66. doi:10.1016/j.jdermsci.2013.03.009.

    CrossRef  CAS  PubMed  Google Scholar 

  38. Pessa JE, et al. The anatomical basis for wrinkles. Aesthet Surg J. 2014;34(2):227–34. doi:10.1177/1090820X13517896.

    CrossRef  PubMed  Google Scholar 

  39. Kontogianni K, et al. DNA damage and repair capacity in lymphocytes from obstructive sleep apnea patients. Environ Mol Mutagen. 2007;48(9):722–7.

    CrossRef  CAS  PubMed  Google Scholar 

  40. Paulsen RD, Cimprich KA. The ATR pathway: fine-tuning the fork. DNA Repair. 2007;6(7):953–66.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Hoffman AE, et al. The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response. Mol Cancer Res. 2008;6(9):1461–8. doi:10.1158/1541-7786.MCR-07-2094.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hadshiew IM, Eller MS, Gilchrest BA. Skin aging and photoaging: the role of DNA damage and repair. Am J Contact Dermat. 2000;11(1):19–25.

    CrossRef  CAS  PubMed  Google Scholar 

  43. Noguti J, et al. Oxidative stress, cancer, and sleep deprivation: is there a logical link in this association? Sleep Breath. 2013;17(3):905–10. doi:10.1007/s11325-012-0797-9.

    CrossRef  PubMed  Google Scholar 

  44. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58(2):85–90. doi:10.1016/j.jdermsci.2010.03.003.

    CrossRef  CAS  PubMed  Google Scholar 

  45. Rinnerthaler M, et al. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. doi:10.3390/biom5020545.

    CrossRef  CAS  PubMed Central  PubMed  Google Scholar 

  46. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J Pineal Res. 2014;57(2):131–46. doi:10.1111/jpi.12162.

    CrossRef  CAS  PubMed  Google Scholar 

  47. Blask DE. Melatonin, sleep disturbance and cancer risk. Sleep Med Rev. 2009;13(4):257–64. doi:10.1016/j.smrv.2008.07.007.

    CrossRef  PubMed  Google Scholar 

  48. Vierkötter A, et al. The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci. 2009;53(3):207–11. doi:10.1016/j.jdermsci.2008.10.001.

    CrossRef  PubMed  Google Scholar 

  49. Sundelin T, et al. Cues of fatigue: effects of sleep deprivation on facial appearance. Sleep. 2013;36(9):1355–60. doi:10.5665/sleep.2964.

    PubMed Central  PubMed  Google Scholar 

  50. Tsukahara K, et al. A study of diurnal variation in wrinkles on the human face. Arch Dermatol Res. 2004;296(4):169–74.

    PubMed  Google Scholar 

  51. Poljsak B, et al. The influence of the sleeping on the formation of facial wrinkles. J Cosmet Laser Ther. 2012;14(3):133–8. doi:10.3109/14764172.2012.685563.

    CrossRef  PubMed  Google Scholar 

  52. Sarifakioğlu N, et al. A new phenomenon: “sleep lines” on the face. Scand J Plast Reconstr Surg Hand Surg. 2004;38(4):244–7.

    CrossRef  PubMed  Google Scholar 

  53. Kotlus BS. Effect of sleep position on perceived facial aging. Dermatol Surg. 2013;39(9):1360–2. doi:10.1111/dsu.12266.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Jdid R, et al. MC1R major variants are a risk factor of sleep lines in Caucasian women. J Eur Acad Dermatol Venereol. 2014;28(6):805–9. doi:10.1111/jdv.12119.

    CrossRef  CAS  PubMed  Google Scholar 

  55. Gur RE, Gur RC. Gender differences in aging: cognition, emotions, and neuroimaging studies. Dialogues Clin Neurosci. 2002;4(2):197–210.

    PubMed Central  PubMed  Google Scholar 

  56. Gur RC, Moberg PJ, Gur RE. Aging and cognitive functioning. Geriatric secrets. Philadelphia: Hanley & Belfus; 1996. p. 126–9.

    Google Scholar 

  57. Saykin AJ, et al. Normative neuropsychological test performance: effects of performance: effects of age, education, gender and ethnicity. Appl Neuropsychol. 1995;2:79–88.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Ohayon MM, Reynolds CF, Dauvilliers Y. Excessive sleep duration and quality of life. Ann Neurol. 2013;73:785–94.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  59. Mallampalli MP, Carter CL. Exploring sex and gender differences in sleep health: a Society for Women’s Health Research Report. J Womens Health. 2014;23(7):553–62.

    CrossRef  Google Scholar 

  60. Guidozzi F. Gender differences in sleep in older men and women. Climacteric. 2015;5:1–7.

    Google Scholar 

  61. Cusmano DM, Hadjimarkou MM, Mong JA. Gonadal steroid modulation of sleep and wakefulness in male and female rats is sexually differentiated and neonatally organized by steroid exposure. Endocrinology. 2014;155:204–14.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  62. Kloth N, et al. Aging affects sex categorization of male and female faces in opposite ways. Acta Psychol. 2015;158:78–86.

    CrossRef  Google Scholar 

  63. Hauri P. Current concepts: the sleep disorders. Kalamazoo: The Upjohn Company; 1977.

    Google Scholar 

  64. Stepanski EJ, Wyatt JK. Use of sleep hygiene in the treatment of insomnia. Sleep Med Rev. 2003;7(3):215–25.

    CrossRef  PubMed  Google Scholar 

  65. Voinescu BI, Szentagotai-Tatar A. Sleep hygiene awareness: its relation to sleep quality and diurnal preference. J Mol Psychiatry. 2015;3(1):1.

    CrossRef  PubMed Central  PubMed  Google Scholar 

  66. Hirokawa K, Nishimoto T, Taniguchi T. Effects of lavender aroma on sleep quality in healthy Japanese students. Percept Mot Skills. 2012;114(1):111–22.

    CrossRef  PubMed  Google Scholar 

  67. Keshavarz AM, et al. Lavender fragrance essential oil and the quality of sleep in postpartum women. Iran Red Crescent Med J. 2015;17:4. doi:10.5812/ircmj.17(4)2015.25880.

    Google Scholar 

  68. Szafrański T. Herbal remedies in depression – state of the art. Psychiatr Pol. 2014;48(1):59–73.

    PubMed  Google Scholar 

  69. Lillehei AS, Halcon LL. A systematic review of the effect of inhaled essential oils on sleep. J Altern Complement Med. 2014;20(6):441–51. doi:10.1089/acm.2013.0311.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linna Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Guan, L., Mehra, R., Baron, E. (2015). Sleep and Aging Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_155-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_155-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine