Skip to main content

Aging Skin: Nourishing from Out-In. Lessons from Wound Healing

  • Living reference work entry
  • First Online:
Book cover Textbook of Aging Skin

Abstract

Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer. There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an ever aging population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Xua Z, et al. Teleost skin, an ancient mucosal surface that elicits gut-like immune responses. Proc Natl Acad Sci U S A. 2013;110(32):13097–102.

    Article  Google Scholar 

  2. Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269:5360–8. doi:10.1046/j.1432-1033.2002.03290.

    Article  CAS  PubMed  Google Scholar 

  3. Kaleta C, et al. Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J. 2013;8:1105–14. doi:10.1002/biot.201200267.

    Article  CAS  PubMed  Google Scholar 

  4. Junker JPE, et al. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care. 2013;2(7):348–56. doi:10.1089/wound.2012.0412.

    Article  Google Scholar 

  5. Chandika P, et al. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol. 2015;14(77):24–35. doi:10.1016/j.ijbiomac.2015.02.050.

    Article  Google Scholar 

  6. Dioguardi FS. Collagen synthesis: a determinant role for amino acids. J Clin Dermatol. 2008;26:636–40.

    Article  Google Scholar 

  7. Corsetti G, et al. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats. Acta Histochem. 2010;112(5):497–507. doi:10.1016/j.acthis.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  8. Segre JA. Epidermal barrier function and recovery in skin disorders. Clin Invest. 2006;116:1150–8.

    Article  CAS  Google Scholar 

  9. Thomas DR, Burkemper NM. Aging skin and wound healing. Clin Geriatr Med. 2013;29(2):xi–xx. doi:10.1016/j.cger.2013.02.001.

    Google Scholar 

  10. Whitton JT, Everall JD. The thickness of the epidermis. Br J Dermatol. 1973;89:467–76.

    Article  CAS  PubMed  Google Scholar 

  11. Kurban RS, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol. 1990;16:908–14.

    Article  CAS  PubMed  Google Scholar 

  12. Gilchrest BA, et al. Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol. 1982;79:85–8.

    Article  CAS  PubMed  Google Scholar 

  13. Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol. 1979;73:47–53.

    Article  CAS  PubMed  Google Scholar 

  14. Swift ME, et al. Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol. 2001;117:1027–35.

    Article  CAS  PubMed  Google Scholar 

  15. Bernstein EF, et al. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol. 1996;34:209–18.

    Article  CAS  PubMed  Google Scholar 

  16. Lavker RM, et al. Aged skin: a study by light, transmission electron, and scanning electron microscopy. J Invest Dermatol. 1987;88:44S–51.

    Article  CAS  PubMed  Google Scholar 

  17. Gosain A, Di Pietro LA. Aging and wound healing. World J Surg. 2004;28:321–6.

    Article  PubMed  Google Scholar 

  18. Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Ann Rev Biochem. 1995;64:403–34.

    Article  CAS  PubMed  Google Scholar 

  19. Lazarus GS, et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol. 1994;130(4):489–93.

    Article  CAS  PubMed  Google Scholar 

  20. Gurtner GC, et al. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  21. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    CAS  PubMed  Google Scholar 

  22. Lau K, et al. Exploring the role of stem cells in cutaneous wound healing. Exp Dermatol. 2009;18(11):921–33.

    Article  CAS  PubMed  Google Scholar 

  23. Martin P. Wound healing-aiming for perfect skin regeneration. Science. 1997;276(5309):75–81.

    Article  CAS  PubMed  Google Scholar 

  24. Rahban SR, Garner WL. Fibroproliferative scars. Clin Plast Surg. 2003;30(1):77–89.

    Article  PubMed  Google Scholar 

  25. McDaniel JC, et al. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008;16(3):337–45.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Novotný MT, et al. ER-agonist induces conversion of fibroblasts into myofibroblasts, while ER-agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats. Exp Dermatol. 2011;20(9):703–8.

    Article  PubMed  Google Scholar 

  27. Cardoso CR, et al. Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 2004;12(2):235–43.

    Article  PubMed  Google Scholar 

  28. Araujo LU, et al. Profile of wound healing process induced by allantoin1. Acta Cir Bras. 2010;25(5):460–6.

    Article  PubMed  Google Scholar 

  29. Broughton G, et al. The basic science of wound healing. Plast Reconstr Surg. 2006;117(7S):12S–34.

    Article  CAS  PubMed  Google Scholar 

  30. Singer AJ, Clark RAF. Cutaneous wound healing. N Engl J Med. 1999;341(10):738–46.

    Article  CAS  PubMed  Google Scholar 

  31. Levenson SM, et al. The healing of rat skin wounds. Ann Surg. 1965;161:293–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009;17:153–62.

    Article  PubMed  Google Scholar 

  33. Freedland M, et al. Fibroblast responses to cytokines are maintained during aging. Ann Plast Surg. 1995;35:290–6.

    Article  CAS  PubMed  Google Scholar 

  34. Reed MJ, et al. TGF-beta 1 induces the expression of type I collagen and SPARC, and enhances contraction of collagen gels, by fibroblasts from young and aged donors. J Cell Physiol. 1994;158:169–79.

    Article  CAS  PubMed  Google Scholar 

  35. Sarabahi S. Recent advances in topical wound care. Indian J Plast Surg. 2012;45(2):379–87. doi:10.4103/0970-0358.101321.

    Article  PubMed Central  PubMed  Google Scholar 

  36. MacKay D, Miller AL. Nutritional support for wound healing. Altern Med Rev. 2003;8(4):359–77.

    PubMed  Google Scholar 

  37. Burlando B, Cornara L. Honey in dermatology and skin care: a review. J Cosmet Dermatol. 2013;12(4):306–13.

    Article  PubMed  Google Scholar 

  38. Olofsson TC, et al. Lactic acid bacterial symbionts in honeybees – an unknown key to honey’s antimicrobial and therapeutic activities. Int Wound J. 2014. doi:10.1111/iwj.12345.

    Google Scholar 

  39. Butler É, et al. A pilot study investigating lactic acid bacterial symbionts from the honeybee in inhibiting human chronic wound pathogens. Int Wound J. 2014. doi:10.1111/iwj.12360.

    Google Scholar 

  40. Lodhi S, Singhai AK. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac J Trop Med. 2013;6(4):253–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mohajeri G, et al. Effects of topical Kiwifruit on healing of neuropathic diabetic foot ulcer. J Res Med Sci. 2014;19(6):520–4.

    PubMed Central  PubMed  Google Scholar 

  42. Nafiu AB, Rahman MT. Anti-inflammatory and antioxidant properties of unripe papaya extract in an excision wound model. Pharm Biol. 2015;53(5):662–71.

    Article  PubMed  Google Scholar 

  43. Lima CC, et al. Ascorbic acid for the healing of skin wounds in rats. Braz J Biol. 2009;69(4):1195–201.

    Article  CAS  PubMed  Google Scholar 

  44. Lin TS, et al. Evaluation of topical tocopherol cream on cutaneous wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2012;2012:491027.

    Google Scholar 

  45. Hemmati AA, et al. Topical vitamin K1 promotes repair of full thickness wound in rat. Indian J Pharmacol. 2014;46(4):409–12.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Eming SA, et al. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–26.

    Article  CAS  PubMed  Google Scholar 

  47. Wild T, et al. Basic in nutrition and wound healing. Nutrition. 2010;26(9):862–6.

    Article  PubMed  Google Scholar 

  48. Jurk D, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun. 2014;5:4172. doi:10.1038/ncomms5172.

    CAS  Google Scholar 

  49. Banerjee P, et al. Wound healing activity of a collagen IV derived cryptic peptide. Amino Acids. 2015;47:317–28.

    Article  CAS  PubMed  Google Scholar 

  50. Pielesz A, Paluch J. Therapeutically active dressings–biomaterials in a study of collagen glycation. Polim Med. 2012;42:115–20.

    PubMed  Google Scholar 

  51. Silvetti AN. An effective method of treating long-enduring wounds and ulcers by topical applications of solutions of nutrients. J Dermatol Surg Oncol. 1981;7(6):501–8.

    Article  CAS  PubMed  Google Scholar 

  52. Shi HP, et al. Supplemental L-arginine enhances wound following trauma/hemorrhagic shock. Wound Repair Regen. 2007;15:66–70.

    Article  CAS  PubMed  Google Scholar 

  53. Gould A, et al. Arginine metabolism and wound healing. Wound Heal S Afr. 2008;1(1):48–50.

    Google Scholar 

  54. Demling RH. Nutrition, anabolism, and the wound healing process: an overview. ePlasty. 2009;9:65–94.

    Google Scholar 

  55. Raynaud-Simon A, et al. Arginine plus proline supplementation elicits metabolic adaptation that favors wound healing in diabetic rats. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):1053–61.

    Article  Google Scholar 

  56. Campbell L, et al. Local arginase 1 activity is required for cutaneous wound healing. J Invest Dermatol. 2013;133:2461–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hennessey PJ, et al. The effects of age and various fat/carbohydrate caloric ratios on nitrogen retention and wound healing in rats. J Pediatr Surg. 1991;26(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  58. Cassino R, Ricci E. Amino acids and wound bed: a possible interaction for a topic and general treatment in the chronic skin lesion repair. Acta Vulnol. 2005;3:111–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco S. Dioguardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Corsetti, G. et al. (2015). Aging Skin: Nourishing from Out-In. Lessons from Wound Healing. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27814-3_136-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27814-3_136-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27814-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics