Aging and Intrinsic Aging: Pathogenesis and Manifestations

  • Hanan Assaf
  • Mohamed A. Adly
  • Mahmoud R. Hussein
Living reference work entry

Abstract

Cutaneous aging is a complex biological phenomenon consisting of two components: intrinsic aging and extrinsic aging. Intrinsic aging is also termed true aging which is an inevitable change attributable to the passage of time alone and is manifested primarily by physiologic alterations with subtle but undoubtedly important consequences for both healthy and diseased skin and is largely genetically determined (Balin and Pratt (Cutis 43(5):431–6, 1989). Extrinsic aging is caused by environmental exposure, primarily to UV light, and more commonly termed photoaging. In sun-exposed areas, photoaging involves changes in cellular biosynthetic activity that lead to gross disorganization of the dermal matrix (Puizina-Ivic (Acta Dermatovenerol Alp Panonica Adriat 17(2):47–54, 2008). The intrinsic rate of skin aging in any individual can be dramatically influenced by personal and environmental factors, particularly the amount of exposure to ultraviolet light. Photodamage, which considerably accelerates the visible aging of skin, also greatly increases the risk of cutaneous neoplasms. So, the processes of intrinsic and extrinsic aging are superimposed. As the population ages, dermatological focus must shift from ameliorating the cosmetic consequences of skin aging to decreasing the genuine morbidity associated with problems of the aging skin. Therefore, a better understanding of both the intrinsic and extrinsic influences on the aging of the skin, as well as distinguishing the retractable aspects of cutaneous aging (primarily hormonal and lifestyle influences) from the irretractable cutaneous aging (primarily intrinsic aging), is very important to solve the problem of aging (Puizina-Ivic (Acta Dermatovenerol Alp Panonica Adriat 17(2):47–54, 2008).

Keywords

Stratum Corneum Bullous Pemphigoid Seborrheic Dermatitis Seborrheic Keratosis Intrinsic Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Balin AK, Pratt LA. Physiological consequences of human skin aging. Cutis. 1989;43(5):431–6.PubMedGoogle Scholar
  2. 2.
    Puizina-Ivic N. Skin aging. Acta Dermatovenerol Alp Panonica Adriat. 2008;17(2):47–54.Google Scholar
  3. 3.
    Ding SL, Shen CY. Model of human aging: recent findings on Werner’s and Hutchinson-Gilford progeria syndromes. Clin Interv Aging. 2008;3(3):431–44.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Holtkotter O, Schlotmann K, Hofheinz H, Olbrisch RR, Petersohn D. Unveiling the molecular basis of intrinsic skin aging(1). Int J Cosmet Sci. 2005;27(5):263–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Chondrogianni N, de Simoes D CM, Franceschi C, Gonos ES. Cloning of differentially expressed genes in skin fibroblasts from centenarians. Biogerontology. 2004;5(6):401–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Hatzis J. The wrinkle and its measurement – a skin surface Profilometric method. Micron. 2004;35(3):201–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Gilchrest BA, Stoff JS, Soter NA. Chronologic aging alters the response to ultraviolet-induced inflammation in human skin. J Invest Dermatol. 1982;79(1):11–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Gilchrest BA. Age-associated changes in the skin. J Am Geriatr Soc. 1982;30(2):139–43.CrossRefPubMedGoogle Scholar
  9. 9.
    Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol. 1979;73(1):47–53.CrossRefPubMedGoogle Scholar
  10. 10.
    Roskos KV, Maibach HI, Guy RH. The effect of aging on percutaneous absorption in man. J Pharmacokinet Biopharm. 1989;17(6):617–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Grove GL. Age-related differences in healing of superficial skin wounds in humans. Arch Dermatol Res. 1982;272(3–4):381–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Van de Kerkhof PC, Van Bergen B, Spruijt K, Kuiper JP. Age-related changes in wound healing. Clin Exp Dermatol. 1994;19(5):369–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Arthur WT, Vernon RB, Sage EH, Reed MJ. Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvasc Res. 1998;55(3):260–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Ashcroft GS, Horan MA, Ferguson MW. Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J Invest Dermatol. 1997;108(4):430–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Ashcroft GS, Herrick SE, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW. Human ageing impairs injury-induced in vivo expression of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and −2 proteins and mRNA. J Pathol. 1997;183(2):169–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Ashcroft GS, Kielty CM, Horan MA, Ferguson MW. Age-related changes in the temporal and spatial distributions of fibrillin and elastin mRNAs and proteins in acute cutaneous wounds of healthy humans. J Pathol. 1997;183(1):80–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Xia YP, Zhao Y, Tyrone JW, Chen A, Mustoe TA. Differential activation of migration by hypoxia in keratinocytes isolated from donors of increasing age: implication for chronic wounds in the elderly. J Invest Dermatol. 2001;116(1):50–6.CrossRefPubMedGoogle Scholar
  18. 18.
    Maize JC, Foster G. Age-related changes in melanocytic naevi. Clin Exp Dermatol. 1979;4(1):49–58.CrossRefPubMedGoogle Scholar
  19. 19.
    Oender K, Trost A, Lanschuetzer C, Laimer M, Emberger M, Breitenbach M, Richter K, Hintner H, Bauer JW. Cytokeratin-related loss of cellular integrity is not a major driving force of human intrinsic skin aging. Mech Ageing Dev. 2008;129(10):563–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Blagosklonny MV. Prevention of cancer by inhibiting aging. Cancer Biol Ther. 2008;7(10):1520–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Albright JW, Mease RC, Lambert C, Albright JF. Trypanosoma musculi: tracking parasites and circulating lymphoid cells in host mice. Exp Parasitol. 1999;91(2):185–95.CrossRefPubMedGoogle Scholar
  22. 22.
    Blagosklonny MV. Aging: ROS or TOR. Cell Cycle. 2008;7(21):3344–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Richardson CJ, Schalm SS, Blenis J. PI3-kinase and TOR: PIKTORing cell growth. Semin Cell Dev Biol. 2004;15(2):147–59.CrossRefPubMedGoogle Scholar
  24. 24.
    Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev. 2005;69(1):79–100.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Matsuoka LY, Wortsman J, Hanifan N, Holick MF. Chronic sunscreen use decreases circulating concentrations of 25-hydroxyvitamin D. A preliminary study. Arch Dermatol. 1988;124(12):1802–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Hussein MR. Analysis of p53, BCL-2 and epidermal growth factor receptor protein expression in the partial and complete hydatidiform moles. Exp Mol Pathol. 2009;87(1):63–9. doi:10.1016/j.yexmp.2009.03.005. Epub 2009 Apr 5Google Scholar
  27. 27.
    de Rigal J, Escoffier C, Querleux B, Faivre B, Agache P, Leveque JL. Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol. 1989;93(5):621–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Roskos KV, Bircher AJ, Maibach HI, Guy RH. Pharmacodynamic measurements of methyl nicotinate percutaneous absorption: the effect of aging on microcirculation. Br J Dermatol. 1990;122(2):165–71.CrossRefPubMedGoogle Scholar
  29. 29.
    Wayne SJ, Rhyne RL, Garry PJ, Goodwin JS. Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol. 1990;45(2):M45–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Braverman IM, Fonferko E. Studies in cutaneous aging: II. The microvasculature. J Invest Dermatol. 1982;78(5):444–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Braverman IM, Fonferko E. Studies in cutaneous aging: I. The elastic fiber network. J Invest Dermatol. 1982;78(5):434–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Quatresooz P, Pierard GE. Immunohistochemical clues at aging of the skin microvascular unit. J Cutan Pathol. 2009;36(1):39–43.CrossRefPubMedGoogle Scholar
  33. 33.
    Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG. Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol. 1989;93(3):353–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Miyahara T, Murai A, Tanaka T, Shiozawa S, Kameyama M. Age-related differences in human skin collagen: solubility in solvent, susceptibility to pepsin digestion, and the spectrum of the solubilized polymeric collagen molecules. J Gerontol. 1982;37(6):651–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Schnider SL, Kohn RR. Effects of age and diabetes mellitus on the solubility and nonenzymatic glucosylation of human skin collagen. J Clin Invest. 1981;67(6):1630–5.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schnider SL, Kohn RR. Effects of age and diabetes mellitus on the solubility of collagen from human skin, tracheal cartilage and dura mater. Exp Gerontol. 1982;17(3):185–94.CrossRefPubMedGoogle Scholar
  37. 37.
    Lipson MJ, Silbert JE. Acid mucopolysaccharides of tadpole tail fin and back skin. Biochim Biophys Acta. 1965;101(3):279–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Kondo K, Seno N, Anno K. Mucopolysaccharides from chicken skin of three age groups. Biochim Biophys Acta. 1971;244(3):513–22.CrossRefPubMedGoogle Scholar
  39. 39.
    Daly CH, Odland GF. Age-related changes in the mechanical properties of human skin. J Invest Dermatol. 1979;73(1):84–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Makrantonaki E, Vogel K, Fimmel S, Oeff M, Seltmann H, Zouboulis CC. Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43(10):939–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Silver AF, Chase HB. An in vivo method for studying the hair cycle. Nature. 1966;210(5040):1051.CrossRefPubMedGoogle Scholar
  42. 42.
    Downing DT, Stewart ME, Strauss JS. Changes in sebum secretion and the sebaceous gland. Dermatol Clin. 1986;4(3):419–23.PubMedGoogle Scholar
  43. 43.
    Procacci P, Zoppi M, Maresca M. Experimental pain in man. Pain. 1979;6(2):123–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Beauregard S, Gilchrest BA. A survey of skin problems and skin care regimens in the elderly. Arch Dermatol. 1987;123(12):1638–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Hope-Simpson RE. The nature of herpes zoster: a long-term study and a new hypothesis. Proc R Soc Med. 1965;58:9–20.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Vestal RE. Aging and pharmacology. Cancer. 1997;80(7):1302–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Adly MA, Assaf HA, Hussein MR. Expression of the heat shock protein-27 in the adult human scalp skin and hair follicle: hair cycle-dependent changes. J Am Acad Dermatol. 2006;54(5):811–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hanan Assaf
    • 1
  • Mohamed A. Adly
    • 2
  • Mahmoud R. Hussein
    • 3
  1. 1.Department of DermatologySaudi German HospitalJeddahSaudi Arabia
  2. 2.Department of ZoologySohag UniversitySohagEgypt
  3. 3.Department of PathologyAssir Central Hospital, and Assuit UniversityAssuitEgypt

Personalised recommendations