Microscopic Research on Fossil Human Bone

  • Michael Schultz
  • Tyede H. Schmidt-Schultz
Living reference work entry


The methods and techniques of light microscopy and scanning electron microscopy are briefly described, and the advantages of polarization microscopy are discussed. Particularly, light microscopy is a useful tool to diagnose fossil bone at the micro-level. Selected samples of fossilized human bones (e.g., Australopithecus, Homo erectus, Homo neanderthalensis, and Paleolithic Homo sapiens) were examined using plain and polarized light. The histomorphological findings show that microscopic research adds much to what can be found by macroscopic examination or by X-ray techniques. In particular, emphasis is placed on morphological structures that give clues to the taxonomy and the functional anatomy of early hominids. Furthermore, morphological structures which originated during the lifetime of the individual (e.g., individual age at death, physical strain, diseases) are explicable. Future perspectives of microscopic analyses are discussed.


Bone Sample Skeletal Remains Fossil Bone Collagen Fiber Bundle Archaeological Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahlquist J, Damsten O (1969) A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci 14:205–212Google Scholar
  2. Behrensmeyer AK, Gordon KD, Yanagi GT (1989) Nonhuman bone modification in Miocene fossils from Pakistan. In: Bonnichsen R, Sorg MH (eds) Bone modification. Peopling of the Americas publication. Institute for Quaternary Studies, University of Maine, Orono (Maine), pp 99–120Google Scholar
  3. Bell LS (1990) Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. J Archaeol Sci 17:85–102CrossRefGoogle Scholar
  4. Bell LS (2012) Histotaphonomy. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton/New York/London/Tokyo, pp 241–251Google Scholar
  5. Cho H (2012) The histology laboratory and principles of microscope instrumentation. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton/New York/London/Tokyo, pp 341–359Google Scholar
  6. Drusini A (1987) Refinement of two methods for the histomorphometric determination of age in human bone. Z Morphol Anthropol 77:167–176PubMedGoogle Scholar
  7. Frost HM (1958) Preparation of thin undecalcified bone sections by rapid manual method. Stain Technol 33:273–276PubMedGoogle Scholar
  8. Grimm H, Strauch R (1959) Schliffuntersuchungen am Knochen zum Nachweis einer Feuerbehandlung bei der Bestattung. Ausgrabungen und Funde 4:262–264Google Scholar
  9. Hublin JJ (1984) The fossil man from Salzgitter-Lebenstedt (FRG) and its place in human evolution during the Pleistocene in Europe. Z Morphol Anthropol 75:45–56PubMedGoogle Scholar
  10. Kerley ER (1965) The microscopic determination of age in human bone. Am J Phys Anthropol 23:149–163CrossRefPubMedGoogle Scholar
  11. Kerley ER, Ubelaker DH (1978) Revisions in the microscopic method of estimation age at death in human cortical bone. Am J Phys Anthropol 49:545–546CrossRefPubMedGoogle Scholar
  12. Kleinschmidt A (1965) Wichtigste Untersuchungsergebnisse der paläolithischen Grabung bei Salzgitter-Lebenstedt. Eiszeitalter und Gegenwart 16:257Google Scholar
  13. Maat GJR, van den Bos RPM, Aarents MJ (2006) Manual for the preparation of ground sections for the microscopy of bone tissue. Leiden: Barge’s Anthropologica 7:1–18Google Scholar
  14. Maggiano CM, Dupras T, Schultz M, Biggerstaff J (2006) Spectral and photobleaching analysis using confocal laser scanning microscopy: a comparison of modern and archaeological bone fluorescence. Mol Cell Probe 20:154–162CrossRefGoogle Scholar
  15. Maggiano IS, Schultz M, Kierdorf H, Sierra Sosa T, Maggiano CM, Tiesler Blos V (2008) Cross-sectional analysis of long bones, occupational activities and long-distance trade of the Classic Maya from Xcambo – archaeological and osteological evidence. Am J Phys Anthropol 136:470–477CrossRefPubMedGoogle Scholar
  16. Maggiano IS, Maggiano CM, Tiesler Blos V, Kierdorf H, Stout SD, Schultz M (2011) A distinct region of microarchitectural variation in femoral compact bone: histomorphology of the endosteal lamellar pocket. Int J Osteoarch 21:743–750CrossRefGoogle Scholar
  17. Mays S (2008) Metabolic bone disease. In: Pinhasi R, Mays S (eds) Advances in human palaeopathology. Wiley, Chichester, pp 215–251Google Scholar
  18. Nováček J (2012) Möglichkeiten und Grenzen der mikroskopischen Leichenbranduntersuchung. Diss rer nat, Institut für Biologie und Chemie, Universität Hildesheim. Onlinepublikation:
  19. Ortner DJ (2003) (ed) Identification of pathological conditions in human skeletal remains. Academic/Elsevier, Amsterdam/Boston/LondonGoogle Scholar
  20. Piepenbrink H, Herrmann B (1988) Behandlung überdauerter Weichgewebe. In: Knussmann R (ed) Anthropologie, vol 1. Handbuch der vergleichenden Biologie des Menschen 1. G. Fischer, Stuttgart/New York, pp 571–576Google Scholar
  21. Robling AG (1998) Histomorphometric assessment of mechanical loading history from human Skeletal remains: the relation between micromorphology and macromorphology at the femoral midshaft. PhD thesis, University of Missouri, ColumbiaGoogle Scholar
  22. Schultz M (1986) Die mikroskopische Untersuchung prähistorischer Skeletfunde. Anwendung und Aussagemöglichkeiten der differentialdiagnostischen Untersuchung in der Paläopathologie, vol 6. Archäologie und Museum. Kanton Baselland, LiestalGoogle Scholar
  23. Schultz M (1988) Methoden der Licht- und Elektronenmikroskopie. In: Knussmann R (ed) Anthropologie, vol 1. Handbuch der vergleichenden Biologie des Menschen I. G. Fischer, Stuttgart/New York, pp 698–730Google Scholar
  24. Schultz M (1997) Microscopic investigation of excavated skeletal remains: a contribution to paleopathology and forensic medicine. In: Haglund WD, Sorg MH (eds) Forensic taphonomy. The postmortem fate of human remains. CRC Press, Boca Raton/New York/London/Tokyo, pp 201–222Google Scholar
  25. Schultz M (1999) Microscopic investigation in fossil hominoidea: a clue to taxonomy, functional anatomy, and the history of diseases. Anat Rec (New Anatomist) 257:225–232CrossRefGoogle Scholar
  26. Schultz M (2001) Paleohistopathology of bone: a new approach to the study of ancient diseases. Am J Phys Anthropol Suppl 33(Yrbk):106–147Google Scholar
  27. Schultz M (2003) Light microscopic analysis in skeletal paleopathology. In: Ortner DJ (ed) Identification of pathological conditions in human skeletal remains. Academic/Elsevier, Amsterdam/Boston/London, pp 73–108CrossRefGoogle Scholar
  28. Schultz M (2006) Results of the anatomical-paleopathological investigations on the Neanderthal skeleton from the Kleine Feldhofer Grotte (1856) including the new discoveries from 1997/2000. In: Schmitz R (ed) Neanderthal 1856–2006. Rheinische Ausgrabungen. Philipp von Zabern Verlag, Mainz, pp 277–318Google Scholar
  29. Schultz M (2012) Light microscopic analysis of macerated pathologically changed bone. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton/New York/London/Tokyo, pp 253–295Google Scholar
  30. Schultz M, Drommer R (1983) Möglichkeiten der Präparateherstellung aus dem Gesichtsschädelbereich für die makroskopische und mikroskopische Untersuchung unter Verwendung neuer Kunststofftechniken. In: Hoppe WG (ed) Fortschritte der Kiefer- und Gesichts-Chirurgie, vol 28. Experimentelle Mund-Kiefer-Gesichts-Chirurgie. Mikrochirurgische Eingriffe. G. Thieme, Stuttgart/New York, pp 95–97Google Scholar
  31. Schultz M, Roberts CA (2002) Diagnosis of leprosy in skeletons from an English later medieval hospital using histological analysis. In: Roberts CA, Lewis M, Manchester K (eds) Proceedings of the 3rd ICEPID: the past and the present of leprosy. BAR International Series 1054. Archaeopress, Oxford, pp 89–104Google Scholar
  32. Schultz M, Teschler-Nicola M (1987) Krankhafte Veränderungen an den Skelettfunden aus dem Karner der St.Martinskirche in Klosterneuburg, Niederösterreich. III. Entzündliche Veränderungen an den langen Röhrenknochen. Annalen des Naturhistorischen Museums Wien 89A:252–296Google Scholar
  33. Streeter M (2012) Histological age-at-death estimation. In: Crowder C, Stout S (eds) Bone histology. An anthropological perspective. CRC Press, Boca Raton/New York/London/Tokyo, pp 135–152Google Scholar
  34. Stout SD (1989) The use of cortical bone histology to estimate age at death. In: Iscan MY (ed) Age markers in the human skeleton. Charles C Thomas, Springfield, pp 195–207Google Scholar
  35. Stout SD, Gehlert SJ (1980) The relative accuracy and reliability of histological aging methods. For Sci Intern 15:181–190Google Scholar
  36. Stout SD, Paine RR (1992) Histological Age Estimation Using Rib and Clavicle. Am J Phys Anthropol 87:111–115CrossRefPubMedGoogle Scholar
  37. Stout SD, Porro MA, Perotti B (1996) Brief communication: A test and correction of the clavicle method of Stout and Paine for histological age estimation of skeletal remains. Am J Phys Anthropol 100:139–142CrossRefPubMedGoogle Scholar
  38. Stout SD, Stanley SC (1991) Percent osteonal bone versus osteon counts. The variable of choice for estimating age at death. Am J Phys Anthropol 86:515–519CrossRefPubMedGoogle Scholar
  39. Teschler-Nicola M, Schultz M (1984) Jungneolitische Skelette der Badener Kultur aus Leobersdorf und Lichtenwörth, Niederösterreich. Ann Naturhist Mus Wien 86A:111–144Google Scholar
  40. Trinkaus E, Zimmerman MR (1982) Trauma among the Shanidar Neandertals. Am J Phys Anthropol 57:61–76CrossRefPubMedGoogle Scholar
  41. Turner CG II, Turner JA (1999) Man corn. Cannibalism and violence in the Prehistoric American Southwest. The University of Utah Press, Salt Lake CityGoogle Scholar
  42. Uytterschaut HT (1985) Determination of skeletal age by histological methods. Z Morphol Anthropol 75:331–340PubMedGoogle Scholar
  43. Uytterschaut HT (1993) Human bone remodeling and aging. In: Grupe G, Garland AN (eds) Histology of ancient human bone: methods and diagnosis. Springer, Berlin/Heidelberg/New York, pp 95–109CrossRefGoogle Scholar
  44. von Hagens G (1979) Impregnation of soft biological specimens with thermosetting resins and elastomers. Anat Rec 194:247–255CrossRefGoogle Scholar
  45. Wolf M (1999) Ergebnisse makro- und mikroskopischer Untersuchungen an den römischen Brandgräbern von Rheinzabern (Rheinland-Pfalz). In: Schultz M (ed) Beiträge zur Paläopathologie, vol 3. Cuvillier Verlag, GöttingenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of AnatomyUniversity Medical School GöttingenGöttingenGermany
  2. 2.Department of BiochemistryUniversity Medical School GöttingenGöttingenGermany

Personalised recommendations