Principles of Taxonomy and Classification: Current Procedures for Naming and Classifying Organisms

  • Michael Ohl
Living reference work entry


Taxonomy deals with the naming and classification of organisms and is an integrative part of biological systematics, the science of biodiversity. The information provided by taxonomic research is a fundamental basis for all fields of biology. Current taxonomy focuses on multicharacter integrative approaches, considering all potentially useful sources of information provided by the various fields of biology. The resulting supraspecific classification should be based on the genealogy of organisms, that is, on a phylogenetic analysis, to be objectively testable. However, for pragmatical reasons, a classification based on overall similarity and diagnostically relevant characters might be a heuristically important step in taxonomy and should be perceived as an approximation to a classification tested by phylogenetic methods. The nested levels in a classification of organisms are usually not only named but also ranked, that is, a set of hierarchical terms, like genus, family, and class, is applied to reflect the hierarchical structure of the classification. Assigning these so-called Linnaean categories to a classification is (1) a voluntary action to make a classification notionally more easy to access and (2) a linguistic activity that is done subsequent to obtaining the scientific results of the systematic analysis.


Fossil Record Type Specimen High Taxon Phylogenetic Hypothesis Zoological Nomenclature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bauhin K (1623) Pinax theatri botanici. Impensis Johannis Regis, BaselGoogle Scholar
  2. Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature 431:1055–1061PubMedCrossRefGoogle Scholar
  3. Cantino PD, de Queiroz K (2010) PhyloCode: a phylogenetic code of biological nomenclature.
  4. Carpenter JM (2003) Critique of pure folly. Bot Rev 69:79–92CrossRefGoogle Scholar
  5. Costello MJ, May RM, Stork NE (2013) Can we name earth’s species before they go extinct? Science 339:413–416PubMedCrossRefGoogle Scholar
  6. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  7. De Salle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360:1905–1916CrossRefGoogle Scholar
  8. Godfray HCJ (2002) Challenges for taxonomy. Nature 417:17–19PubMedCrossRefGoogle Scholar
  9. Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598PubMedCrossRefGoogle Scholar
  10. Griffiths GCD (1974) On the foundations of biological systematics. Acta Biotheor 23:85–131CrossRefGoogle Scholar
  11. Griffiths GCD (1976) The future of Linnaean nomenclature. Syst Zool 25:168–173CrossRefGoogle Scholar
  12. Groves C (2001) Primate taxonomy. Smithsonian Institution Press, Washington, DCGoogle Scholar
  13. Hawksworth DL, Bisby FA (1988) Systematics: the keystone of biology. In: Hawksworth DL (ed) Prospects in systematics, The systematics association special volume no. 36. Clarendon Press, Oxford, pp 3–30Google Scholar
  14. Hennig W (1950) Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zentralverlag, BerlinGoogle Scholar
  15. Hennig W (1966) Phylogenetic systematics (trans: Davis DD, Zangerl R). University of Illinois Press, UrbanaGoogle Scholar
  16. Hennig W (1969) Die Stammesgeschichte der Insekten. Verlag Waldemar Kramer, Frankfurt am MainGoogle Scholar
  17. Huxley J (ed) (1940a) The new systematics. Clarendon, OxfordGoogle Scholar
  18. Huxley J (1940b) Towards the new systematics. In: Huxley J (ed) The new systematics. Clarendon, Oxford, pp 1–46Google Scholar
  19. International Commission on Zoological Nomenclature (1999) International code of zoological nomenclature, 4th edn. The International Trust for Zoological Nomenclature, LondonGoogle Scholar
  20. Longino JT (1993) Scientific naming. Natl Geogr Res Explor 9:80–85Google Scholar
  21. Mägdefrau K (1992) Geschichte der Botanik, 2nd edn. Gustav Fischer, Stuttgart/Jena/New YorkGoogle Scholar
  22. Martin RD (2002) Primatology as an essential basis for biological anthropology. Evol Anthropol 11(Suppl 1):3–6Google Scholar
  23. Mayr E (1995) Systems of ordering data. Biol Philos 10:419–434CrossRefGoogle Scholar
  24. Mayr E, Ashlock PD (1991) Principles of systematic zoology, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  25. Mayr E, Bock WJ (2002) Classifications and other ordering systems. J Zool Syst Evol Res 40:169–194CrossRefGoogle Scholar
  26. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  27. Nixon KC, Carpenter JM (2000) On the other “phylogenetic systematics.”. Cladistics 16:298–318Google Scholar
  28. Nixon KC, Carpenter JM (2003) The PhyloCode is fatally flawed, and the “Linnaean” system can easily be fixed. Bot Rev 69:111–120CrossRefGoogle Scholar
  29. Padial JM, Miralles A, de al Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16. doi:10.1186/1742-9994-7-16PubMedCentralPubMedCrossRefGoogle Scholar
  30. Patterson C, Rosen DE (1977) Review of ichthyodectiform and other mesozoic teleost fishes and the theory and practice of classifying fossils. Bull Am Mus Nat Hist 158:81–172Google Scholar
  31. Pleijel F, Rouse GW (2003) Ceci n’est pas une pipe: names, clades and phylogenetic nomenclature. Version 4c. J Zool Syst Evol Res 41:162–174CrossRefGoogle Scholar
  32. Polaszek A (ed) (2010) Systema Naturae 250 – The Linnaean Ark. CRC Press, Boca Raton/London/New YorkGoogle Scholar
  33. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219PubMedCrossRefGoogle Scholar
  34. Rasnitsyn AP (2002) Order Hymenoptera Linné, 1758. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic, Dordrecht/Boston/London, pp 242–254CrossRefGoogle Scholar
  35. Richter S, Sudhaus W (2004) Vorspann zu den Kontroversen in der phylogenetischen Systematik der Metazoa. Sber Ges Naturf Freunde Berlin (NF) 43:5–13Google Scholar
  36. Schuh RT (2000) Biological systematics: principles and applications. Cornell University Press, Ithaca/LondonGoogle Scholar
  37. Schuh RT (2003) The Linnaean system and its 250-year-persistence. Bot Rev 69:59–78CrossRefGoogle Scholar
  38. Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New YorkGoogle Scholar
  39. Sluys R (2013) The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodivers Conserv 22:1095–1105CrossRefGoogle Scholar
  40. Spamer EE (1999) Know thyself: responsible science and the lectotype of Homo sapiens Linnaeus, 1758. Proc Acad Natl Sci Philos 149:109–114Google Scholar
  41. Stork NE, Samways MJ (1995) Inventorying and monitoring. In: Heywood VH (ed) Global biodiversity assessment. United Nations environment programme. Cambridge University Press, Cambridge, pp 453–543Google Scholar
  42. Sudhaus W, Rehfeld K (1992) Einführung in die Phylogenetik und Systematik. Gustav Fischer, Stuttgart/Jena/New YorkGoogle Scholar
  43. Tavaré S, Marshall CR, Will O, Soligo C, Martin RD (2002) Using the fossil record to estimate the age of the last common ancestor of extant primates. Nature 416:726–729PubMedCrossRefGoogle Scholar
  44. Vane-Wright RI (2001) Methods of taxonomy. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5. Academic, San Diego, pp 589–606CrossRefGoogle Scholar
  45. Wägele J-W (2005) Foundations of Phylogenetic systematics. Verlag F Pfeil, MünchenGoogle Scholar
  46. Wakeham- Dawson A, Morris S, Tubbs P (2002) Type specimens: dead or alive? Bull Zool Nomencl 59:282–284Google Scholar
  47. Wheeler QD (2005) Losing the plot: DNA “barcodes” and taxonomy. Cladistics 21:405–407CrossRefGoogle Scholar
  48. Wheeler QD (ed) (2008) The new taxonomy. CRC Press, Boca Raton/London/New YorkGoogle Scholar
  49. Wheeler QD, Valdecasas AG (2005) Ten challenges to transform taxonomy. Graellsia 61:151–160CrossRefGoogle Scholar
  50. Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science 303:285PubMedCrossRefGoogle Scholar
  51. Wheeler QD et al (2012) Mapping the biosphere: exploring species to understand the origin, organization and sustainability of biodiversity. Syst Biodiv 10:1–20CrossRefGoogle Scholar
  52. Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55CrossRefGoogle Scholar
  53. Wilson EO (2003) The encyclopedia of life. TREE 18:77–80Google Scholar
  54. Winston JE (1999) Describing species-practical taxonomic procedure for biologists. Columbia University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Museum für Naturkunde - Leibniz-Institut für Evolutions- und BiodiversitätsforschungMuseum für NaturkundeBerlinGermany

Personalised recommendations