Patterns of Diversification and Extinction

Living reference work entry

Abstract

The history of life on Earth, from the earliest microscopic cells to the modern world populated by the rich variety of animals, plants, fungi, and microbes, is more than 3,500 Myr long. Documenting the diversity patterns through the Proterozoic and Phanerozoic has been a major task in the past decades and is fraught with many methodological problems. The emerging picture is one of a very irregular increase in diversity. The most significant episodes of diversification occurred during the Cambrian–Ordovician and throughout the Mesozoic–Cenozoic. In the Phanerozoic alone, 5 major and more than 15 smaller mass extinctions disrupted the diversification of life and sometimes drastically altered the way of evolution. There was no common cause for these events, but all were the consequence of large-scale environmental perturbations. There is growing concern that we are currently entering a “Sixth” major extinction, caused by human impact on nature.

Keywords

Mass Extinction Late Ordovician Cambrian Explosion Extinction Pattern Shocked Quartz 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aberhan M, Kiessling W (2012) Phanerozoic marine biodiversity: a fresh look at data, methods, patterns and process. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 3–22Google Scholar
  2. Aboussalam ZS, Becker RT (2011) The global Taghanic Biocrisis (Givetian) in the eastern Anti-Atlas, Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 304:136–164Google Scholar
  3. Adachi N, Ezaki Y, Liu J (2011) Early Ordovician shift in reef construction from microbial to metazoan reefs. Palaios 26:106–114Google Scholar
  4. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud’homme B, de Rosa R (2000) The new animal phylogeny: reliability and implications. Proc Natl Acad Sci 97:4453–4456PubMedCentralPubMedGoogle Scholar
  5. Adrain JM, Westrop SR (2003) Paleobiodiversity: we need new data. Paleobiology 29:22–25Google Scholar
  6. Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci 109:728–732PubMedCentralPubMedGoogle Scholar
  7. Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B 353:113–130Google Scholar
  8. Algeo TJ, Chen ZQ, Fraiser ML, Twitchett RJ (2011) Terrestrial–marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 308:1–11Google Scholar
  9. Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433:123–27PubMedGoogle Scholar
  10. Alroy J (1999) Putting North America’s end-Pleistocene megafaunal mass extinction in context: large-scale analyses of spatial patterns, extinction rates, and size distributions. In: MacPhee RDE (ed) Extinctions in near time: causes, contexts, and consequences. Plenum Press, New York, pp 105–143Google Scholar
  11. Alroy J (2010) The shifting balance of diversity among major marine animal groups. Science 329:1191–1194PubMedGoogle Scholar
  12. Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs DK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski JJ Jr, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci 98:6261–6266PubMedCentralPubMedGoogle Scholar
  13. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Ferguson CA, Hanson VL, Jamet CM, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Peters SE, Sessa JA, Simpson C, Tomasovych A, Visaggi CC (2008) Phanerozoic trends in the diversity of marine invertebrates. Science 321:97–100PubMedGoogle Scholar
  14. Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108PubMedGoogle Scholar
  15. Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269:930–935PubMedGoogle Scholar
  16. Appel PWU, Moorbath S, Myers JS (2003) Isuasphaera isua (Pflug) revisited. Precambrian Res 126:309–312Google Scholar
  17. Archibald JD (1996) Dinosaur extinction and the end of an era: what the fossils say. Columbia University Press, New YorkGoogle Scholar
  18. Archibald JD (2011) Extinction and radiation: how the fall of dinosaurs led to the rise of mammals. Johns Hopkins University Press, BaltimoreGoogle Scholar
  19. Archibald JD, Fastovsky DE (2004) Dinosaur extinction. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. University of California Press, Berkeley, pp 672–684Google Scholar
  20. Armstrong HA (1996) Biotic recovery after mass extinction: the role of climate and ocean-state in the post-glacial (Late Ordovician-Early Silurian) recovery of the conodonts. In: Hart MB (eds) Biotic recovery from mass extinction events. Geological Society London Special Publication 102. The Geological Society, London, pp 105–117Google Scholar
  21. Ausich WI, Bottjer DJ (1982) Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173–174PubMedGoogle Scholar
  22. Awramik SM, Sprinkle J (1999) Proterozoic stromatolites: the first marine evolutionary biota. Hist Biol 13:241–253Google Scholar
  23. Bambach RK (1977) Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152–167Google Scholar
  24. Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, vol 3, Topics in geobiology. Plenum Press, New York, pp 719–746Google Scholar
  25. Bambach RK (1993) Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystems. Paleobiology 19:372–397Google Scholar
  26. Bambach RK, Knoll AH, Sepkoski JJ Jr (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci 99:6854–6859PubMedCentralPubMedGoogle Scholar
  27. Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30:522–542Google Scholar
  28. Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:1–22Google Scholar
  29. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306:70–75PubMedGoogle Scholar
  30. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57PubMedGoogle Scholar
  31. Baumiller TK, Salamon MA, Gorzelak P, Mooi R, Messing CG (2010) Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proc Natl Acad Sci 107:5893–5896PubMedCentralPubMedGoogle Scholar
  32. Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291:1530–1533PubMedGoogle Scholar
  33. Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: a possible End-Permian impact crater offshore of Northwestern Australia. Science 304:1469–1476PubMedGoogle Scholar
  34. Becker RT, Gradstein FM, Hammer O (2012) The Devonian period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 559–601Google Scholar
  35. Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354PubMedGoogle Scholar
  36. Bengtson S (1994) The advent of animal skeletons. In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 412–425Google Scholar
  37. Bengtson S, Cunningham JA, Yin C, Donoghue PCJ (2012) A merciful death for the “earliest bilaterian”, Vernanimalcula. Evol Dev 14:421–427PubMedGoogle Scholar
  38. Benton MJ (1990) Scientific methodologies in collision: the history of the study of the extinction of the dinosaurs. Evol Biol 24:371–400Google Scholar
  39. Benton MJ (ed) (1993) The fossil record 2. Chapman & Hall, LondonGoogle Scholar
  40. Benton MJ (1994) Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern. In: Fraser NC, Sues H-D (eds) The shadow of dinosaurs. Cambridge University Press, Cambridge, pp 366–397Google Scholar
  41. Benton MJ (1995) Diversification and extinction in the history of life. Science 268:52–58PubMedGoogle Scholar
  42. Benton MJ (1999) The history of life: large databases in palaeontology. In: Harper DAT (ed) Numerical palaeobiology. Wiley, Chichester, pp 249–283Google Scholar
  43. Benton MJ (2001) Biodiversity through time. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 211–220Google Scholar
  44. Benton MJ (2003) When life nearly died: the greatest mass extinction of all times. Thames & Hudson, LondonGoogle Scholar
  45. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: the end-Permian extinction event. Trends Ecol Evol 18:358–365Google Scholar
  46. Benton MJ, Ruta M, Dunhill AM, Sakamoto M (2013) The first half of tetrapod evolution, sampling proxies, and fossil record quality. Palaeogeogr Palaeoclimatol Palaeoecol 372:18–41Google Scholar
  47. Berggren WA, Prothero DR (1992) Eocene-Oligocene climatic and biotic evolution: an overview. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 1–28Google Scholar
  48. Bergman NM, Lenton TM, Watson AJ (2004) COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304:397–437Google Scholar
  49. Berner RA (1998) The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond B 353:75–82Google Scholar
  50. Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci 96:10955–10957PubMedCentralPubMedGoogle Scholar
  51. Berner RA, Beerling DJ, Dudley R, Robinson JM, Wildmann RA Jr (2003) Phanerozoic atmospheric oxygen. Ann Rev Earth Planet Sci 31:105–134Google Scholar
  52. Berry WBN, Boucot AJ (1973) Glacio-eustatic control of Late Ordovician-Early Silurian platform sedimentation and faunal changes. Geol Soc Am Bull 84:275–284Google Scholar
  53. Bhattacharya D, Yoon HS, Hedges SB, Hackett JD (2009) Eukaryotes (Eukaryota). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 116–120Google Scholar
  54. Blair JE (2009) Animals (Metazoa). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 223–230Google Scholar
  55. Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:3.1–3.24Google Scholar
  56. Bottjer DJ (2002) Enigmatic Ediacara fossils: ancestors or aliens? In: Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) Exceptional fossil preservation: a unique view on the evolution of marine life. Columbia University Press, New York, pp 11–33Google Scholar
  57. Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft-substrata suspension-feeding communities. Paleobiology 12:400–420Google Scholar
  58. Bottjer DJ, Hagadorn JW, Dornbos SQ (2000) The Cambrian substrate revolution. GSA Today 10(9):1–7Google Scholar
  59. Bottjer DJ, Droser ML, Sheehan PM, McGhee GR Jr (2001) The ecological architecture of major events in the Phanerozoic history of marine invertebrate life. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology. Columbia University Press, New York, pp 35–61Google Scholar
  60. Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) (2002) Exceptional fossil preservation—a unique view on the evolution of marine life. Columbia University Press, New YorkGoogle Scholar
  61. Boucot AJ (1983) Does evolution take place in an ecological vacuum? J Paleontol 57:1–30Google Scholar
  62. Brack A (ed) (1998) The molecular origin of life: assembling pieces of the puzzle. Cambridge University Press, CambridgeGoogle Scholar
  63. Brasier MD (1992) Nutrient-enriched waters and the early skeletal fossil record. J Geol Soc Lond 149:621–629Google Scholar
  64. Brasier M, Antcliffe J (2004) Decoding the Ediacaran enigma. Science 305:1115–1117PubMedGoogle Scholar
  65. Brasier MD, Lindsay JF (2001) Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 69–89Google Scholar
  66. Brasier MD, Green O, Lindsay J, Steele A (2004) Earth’s oldest (_3.5 Ga) fossils and the “Early Eden Hypothesis”: questioning the evidence. Orig Life Evol Biosph 34:257–269PubMedGoogle Scholar
  67. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the End-Permian mass extinction. Science 325:1118–1121PubMedGoogle Scholar
  68. Brenchley PJ (2001) Late ordovician extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 220–223Google Scholar
  69. Brenchley PJ, Marshall JD, Carden GAF, Robertson DBR, Long DGF, Meidla T, Hints L, Anderson TF (1994) Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22:295–298Google Scholar
  70. Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476Google Scholar
  71. Brezinski DK, Cecil CB, Skema VW, Kertis CA (2009) Evidence for long-term climate change in Upper Devonian strata of the central Appalachians. Palaeogeogr Palaeoclimatol Palaeoecol 284:315–325Google Scholar
  72. Bridgwater D, Allaart JH, Schopf JW, Klein C, Walter ES, Strother P, Knoll AH, Gorman BE (1981) Microfossil-like objects from the Archean of Greenland: a cautionary note. Nature 289:51–53Google Scholar
  73. Briggs DEG (1985) Gigantism in Palaeozoic arthropods. Spec Pap Palaeontol 33:1–157Google Scholar
  74. Briggs DEG, Fortey RA, Wills MA (1992) Morphological disparity in the Cambrian. Science 256:1670–1673PubMedGoogle Scholar
  75. Briggs DEG, Erwin DH, Collier FJ (1994) The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, p 238Google Scholar
  76. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036PubMedGoogle Scholar
  77. Brusatte SL (2012) Dinosaur paleobiology. Wiley-Blackwell, HobokenGoogle Scholar
  78. Buatois L, Mangano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, CambridgeGoogle Scholar
  79. Budd GE (2008) The earliest fossil record of the animals and its significance. Philos Trans R Soc B 363:1425–1434Google Scholar
  80. Budd GE, Jensen S (2004) The limitations of the fossil record and the dating of the origin of the bilateria. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossil record. Taylor & Francis, London, pp 166–189Google Scholar
  81. Buick R (2001) Life in the Archean. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 13–21Google Scholar
  82. Buick R, Des Marais DJ, Knoll AH (1995) Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chem Geol 123:153–171PubMedGoogle Scholar
  83. Burney DA, Flannery TF (2005) Fifty millenia of catastrophic extinctions after human contact. Trends Ecol Evol 20:395–401PubMedGoogle Scholar
  84. Burzin MB, Debrenne F, Zhuravlev AY (2001) Evolution of shallow-water level-bottom communities. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 217–237Google Scholar
  85. Bush AM, Bambach RK (2004) Did alpha diversity increase through the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112:625–642Google Scholar
  86. Bush AM, Bambach RK (2011) Paleoecologic megatrends in marine metazoa. Annu Rev Earth Planet Sci 39:241–269Google Scholar
  87. Bush AM, Markey MJ, Marshall CR (2004) Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling standardization. Paleobiology 30:666–686Google Scholar
  88. Bush AM, Bambach RK, Daley GM (2007) Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:76–97Google Scholar
  89. Buss LW, Seilacher A (1994) The phylum Vendobionta: a sister group of the Eumetazoa? Paleobiology 20:1–4Google Scholar
  90. Butterfield N (2001) Ecology and evolution of the Cambrian plankton. In: Zhuravlev AY, Riding R (eds) Ecology of the Cambrian radiation. Columbia University Press, New York, pp 200–216Google Scholar
  91. Butterfield N (2009) Oxygen, animals and oceanic ventilation: an alternative view. Geobiology 7:1–7PubMedGoogle Scholar
  92. Butterfield N (2011) Terminal developments in Ediacaran embryology. Science 334:1655–1656PubMedGoogle Scholar
  93. Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science 258:1760–1763PubMedGoogle Scholar
  94. Campi MJ (2012) The Permian—a time of major evolutions and revolutions in the history of life. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 705–718Google Scholar
  95. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36Google Scholar
  96. Caputo MV (1985) Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol 51:291–317Google Scholar
  97. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109PubMedGoogle Scholar
  98. Chaloner WG (2003) The role of carbon dioxide in plant evolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 65–83Google Scholar
  99. Chan CX, Bhattacharya D (2010) The origin of plastids. Nat Educ 3(9):84Google Scholar
  100. Chandler MA, Sohl LE (2000) Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J Geophys Res 105:20737–20756Google Scholar
  101. Chatterjee HJ, Ho SYW, Barnes I, Groves C (2009) Estimating the phylogeny and divergence times of primates using a supermatrix approach. BMC Evol Biol 9(259):1–19Google Scholar
  102. Chen Z-Q, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383Google Scholar
  103. Chen J-Y, Oliveri P, Li CW, Zhou GQ, Gao F, Hagadorn JW, Peterson KJ, Davidson EH (2000) Precambrian animal diversity: putative phosphatized embryos from the Doushantuo formation of China. Proc Natl Acad Sci U S A 97:4457–4462PubMedCentralPubMedGoogle Scholar
  104. Chen J-Y, Bottjer DJ, Oliveri P, Dornbos SQ, Gao F, Ruffins S, Chi H, Li C-W, Davidson EH (2004) Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305:218–222PubMedGoogle Scholar
  105. Clapham ME, Payne JL (2011) Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39:1059–1062Google Scholar
  106. Clapham ME, Shen S, Bottjer DJ (2009) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end-Guadalupian biotic crisis (Late Permian). Paleobiology 35:32–50Google Scholar
  107. Conway Morris S (1993) Ediacaran-like fossils in the Cambrian Burgess Shale-type faunas of North America. Palaeontology 36:593–635Google Scholar
  108. Conway Morris S (1998) The crucible of creation. Oxford University Press, OxfordGoogle Scholar
  109. Conway Morris S (2000) The Cambrian “explosion”: slow-fuse or megatonnage? Proc Natl Acad Sci U S A 97:4426–4429PubMedCentralPubMedGoogle Scholar
  110. Conway Morris S (2001) Significance of early shells. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 31–40Google Scholar
  111. Conway Morris S (2003) Life’s solution: inevitable humans in a lonely universe. Cambridge University Press, CambridgeGoogle Scholar
  112. Cooper RA, Maxwell PA, Crampton JS, Beu AG, Jones CM, Marshall BA (2006) Completeness of the fossil record: estimating losses due to small body size. Geology 34:241–244Google Scholar
  113. Copley S, Summons R (2012) Terran metabolism. The first billion years. In: Impey C, Lunine J, Funes J (eds) Frontiers of astrobiology. Cambridge University Press, Cambridge, pp 48–72Google Scholar
  114. Copper P (1986) Frasnian/Famennian mass extinction and cold-water oceans. Geology 14:835–839Google Scholar
  115. Copper P (1988) Ecological succession in Phanerozoic reefs: is it real? Palaios 3:136–152Google Scholar
  116. Copper P, Scotese CR (2003) Megareefs in middle Devonian supergreenhouse climates. Geol Soc Am Spec Pap 370:209–230Google Scholar
  117. Courtillot V (1990) A volcanic eruption. Sci Am 263(4):53–60Google Scholar
  118. Courtillot V (1999) Evolutionary catastrophes: the science of mass extinctions. Cambridge University Press, CambridgeGoogle Scholar
  119. Courtillot V, Gaudemer Y (1996) Effects of mass extinctions on biodiversity. Nature 381:146–148Google Scholar
  120. Cowen R (2013) History of life, 5th edn. Blackwell, MaldenGoogle Scholar
  121. Crimes TP (1992) The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 177–202Google Scholar
  122. Crimes TP (2001) Evolution of the deep-water benthic community. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 275–297Google Scholar
  123. Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New YorkGoogle Scholar
  124. Crutzen PJ (2002) Geology of mankind: the Anthropocene. Nature 415:23PubMedGoogle Scholar
  125. Crutzen PJ, Stoermer EF (2000) The Anthropocene. Global Change Newsl 41:17–18Google Scholar
  126. D’Hondt S (2005) Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annu Rev Ecol Syst 36:295–317Google Scholar
  127. Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC, Gordon GW, Knoll AH, Nielsen AT, Schovsbo NH, Canfield DE (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci 107:17011–17915Google Scholar
  128. De Gregorio BT, Sharp TG, Flynn GJ, Wirick S, Hervig RL (2009) Biogenic origin for Earth’s oldest putative microfossils. Geology 37:631–634Google Scholar
  129. Deamer DW (2011) First life: discovering the connections between stars, cells, and how life began. University of California Press, BerkeleyGoogle Scholar
  130. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421:245–249PubMedGoogle Scholar
  131. Deenen MHL, Ruhl M, Krijgsman W, Kuerschner WM, Reitsma M, van Bergen MJ (2010) A new chronology for the end-Triassic mass extinction. Earth Planet Sci Lett 291:113–125Google Scholar
  132. Delabroye A, Vecoli M (2010) The end-Ordovician glaciation and the Hirnantian Stage: a global review and questions about Late Ordovician event stratigraphy. Earth Sci Rev 98:269–282Google Scholar
  133. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128PubMedGoogle Scholar
  134. Dornbos SQ, Bottjer DJ (2000) Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution. Geology 28:839–842Google Scholar
  135. Dornbos SQ, Bottjer DJ, Chen J-Y (2005) Paleoecology of benthic metazoans in the early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: evidence for the Cambrian substrate revolution. Palaeogeogr Palaeoclimatol Palaeoecol 220:47–67Google Scholar
  136. Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci 101:15386–15391PubMedCentralPubMedGoogle Scholar
  137. Droser ML, Bottjer DJ (1989) Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology 17:850–852Google Scholar
  138. Droser ML, Bottjer DJ (1993) Trends and patterns of Phanerozoic ichnofabrics. Annu Rev Earth Planet Sci 21:205–225Google Scholar
  139. Droser ML, Li X (2001) The Cambrian radiation and the diversification of sedimentary fabrics. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 137–169Google Scholar
  140. Droser ML, Bottjer DJ, Sheehan PM, McGhee GR Jr (2000) Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28:675–678Google Scholar
  141. Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201:1043–1050PubMedGoogle Scholar
  142. Dudley R (2000) The evolutionary physiology of animal flight: paleobiological and present perspectives. Annu Rev Physiol 62:135–155PubMedGoogle Scholar
  143. Dyer BD, Obar RA (1994) Tracing the history of eukaryotic cells: the enigmatic smile. Columbia University Press, New YorkGoogle Scholar
  144. Dzik J (1993) Early metazoan evolution and the meaning of its fossil record. Evol Biol 27:339–386Google Scholar
  145. Dzik J (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr Comp Biol (formerly Am Zool) 43:114–126Google Scholar
  146. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172Google Scholar
  147. Erwin DH (1990) The end-Permian mass extinction. Annu Rev Ecol Syst 21:69–91Google Scholar
  148. Erwin DH (1993) The great Paleozoic crisis. Life and death in the Permian. Columbia University Press, New York, p 327Google Scholar
  149. Erwin DH (1996a) The mother of mass extinctions. Sci Am 275:72–78Google Scholar
  150. Erwin DH (1996b) Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. The University of Chicago Press, Chicago, pp 398–418Google Scholar
  151. Erwin DH (2001a) Metazoan origins and early evolution. In: Briggs DEG, McCrowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 25–31Google Scholar
  152. Erwin DH (2001b) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci 98:5399–5403PubMedCentralPubMedGoogle Scholar
  153. Erwin DH (2003) Impact at the Permo-Triassic boundary: a critical evaluation. Astrobiology 3(1):67–74PubMedGoogle Scholar
  154. Erwin DH (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, PrincetonGoogle Scholar
  155. Erwin DH (2007) Disparity: morphological pattern and developmental context. Palaeontology 50:57–73Google Scholar
  156. Erwin DH (2009) Climate as a driver of evolutionary change. Curr Biol 19:R575–R583PubMedGoogle Scholar
  157. Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032PubMedGoogle Scholar
  158. Erwin DH, Droser ML (1993) Elvis taxa. Palaios 8:623–624Google Scholar
  159. Erwin DH, Valentine JW (2013) The Cambrian explosion: the construction of animal biodiversity. Roberts and Company, Greenwood VillageGoogle Scholar
  160. Erwin DH, Bowring SA, Jin YG (2002) End-Permian mass extinctions: a review. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America special paper 356. pp 363–383Google Scholar
  161. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097PubMedGoogle Scholar
  162. Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23:967–970Google Scholar
  163. Fagerstrom JA (1994) The history of Devonian- Carboniferous reef communities: extinctions, effects, recovery. Facies 30:177–192Google Scholar
  164. Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusk-like bilaterian organism. Nature 388:868Google Scholar
  165. Fedonkin MA, Gehling JG, Grey K, Narbonne GM, Vickers-Rich P (2007) The rise of animals: evolution and diversification of the kingdom Animalia. Johns Hopkins University Press, BaltimoreGoogle Scholar
  166. Fenchel T (2002) The origin and early evolution of life. Oxford University Press, OxfordGoogle Scholar
  167. Finnegan S, McClain CM, Kosnik MA, Payne JL (2011) Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252–269Google Scholar
  168. Fischer AG (1984) The two Phanerozoic supercycles. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 129–150Google Scholar
  169. Fischer WW (2008) Life before the rise of oxygen. Nature 455:1051–1052PubMedGoogle Scholar
  170. Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep water carbonate environments. Society of Economic Paleontologists and Mineralogists special publication 25, SEPM, Tulsa, Oklahoma. pp 18–50Google Scholar
  171. Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crises. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM special publication 72, SEPM, Tulsa, Oklahoma. pp 691–733Google Scholar
  172. Foote M (1997) The evolution of morphological disparity. Annu Rev Ecol Syst 28:129–152Google Scholar
  173. Foote M (2000) Origination and extinction components of taxonomic diversity: general problems. Paleobiol Spec Issue 4:74–102Google Scholar
  174. Fortey RA, Cocks RM (2005) Late Ordovician global warming—the Boda event. Geology 33:405–408Google Scholar
  175. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: the history of earth’s climate over the past 600 million years. Cambridge University Press, CambridgeGoogle Scholar
  176. Frese RRB, Potts LV, Wells SB, Leftwich TE, Kim HR, Kim JW, Golynsky AV, Hernandez O, Gaya-Piqué LR (2009) GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica. Geochem Geophys Geosyst 10(2):1–14Google Scholar
  177. Gargaud M, Martin H, López-García P, Montmerle T, Pascal R (2012) Young sun, early earth and the origins of life. Springer, HeidelbergGoogle Scholar
  178. Giribet G (2002) Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Mol Phylogenet Evol 24:345–357PubMedGoogle Scholar
  179. Glaessner M (1983) The emergence of metazoa in the early history of life. Precambrian Res 290:427–441Google Scholar
  180. Glaessner M (1984) The dawn of animal life: a biohistorical study. Cambridge University Press, CambridgeGoogle Scholar
  181. Glansdorff N, Xu Y, Labedan B (2008) The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3(1-35):29PubMedCentralPubMedGoogle Scholar
  182. Goldblatt C, Lenton TM, Watson AJ (2006) Bistability of atmospheric oxygen and the Great Oxidation. Nature 443:683–686PubMedGoogle Scholar
  183. Gould SJ (1989) Wonderful life: the Burgess Shale and the nature of history. Norton, New YorkGoogle Scholar
  184. Gould SJ (1991) The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411–423Google Scholar
  185. Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Norton, New YorkGoogle Scholar
  186. Gould SJ (2001) Contingency. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 195–198Google Scholar
  187. Graham JB, Dudley R, Aguilar N, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120Google Scholar
  188. Greene SE, Martindale RC, Ritterbush KA, Bottjer DJ, Corsetti FA, Berelson WM (2012) Recognising ocean acidification in deep time: an evaluation of the evidence for acidification across the Triassic-Jurassic boundary. Earth Sci Rev 113:72–93Google Scholar
  189. Gregory JT (1955) Vertebrates in the geologic time scale. Geol Soc Am Spec Pap 62:593–608Google Scholar
  190. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358PubMedGoogle Scholar
  191. Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359Google Scholar
  192. Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Chongyu Y, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of Neoproterozoic animal embryos. Science 314:291–294PubMedGoogle Scholar
  193. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256Google Scholar
  194. Hallam A (2002) How catastrophic was the end-Triassic extinction? Lethaia 35:147–157Google Scholar
  195. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford, p 320Google Scholar
  196. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48:217–250Google Scholar
  197. Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science 257:232–235PubMedGoogle Scholar
  198. Hannisdal B, Peters SE (2011) Phanerozoic Earth system evolution and marine biodiversity. Science 334:1121–1124PubMedGoogle Scholar
  199. Harper EM (2003) The Mesozoic marine revolution. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator-prey interactions in the fossil record, vol 20, Topics in geobiology. Kluwer Academic/Plenum, New York, pp 433–455Google Scholar
  200. Harper DAT (2006a) The Ordovician biodiversification: setting an agenda for marine life. Palaeogeogr Palaeoclimatol Palaeoecol 232:148–166Google Scholar
  201. Harper EM (2006b) Dissecting post-Palaeozoic arms races. Palaeogeogr Palaeoclimatol Palaeoecol 232:322–343Google Scholar
  202. Harrison JF, Kaiser A, VandenBrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B 277:1937–1946PubMedCentralPubMedGoogle Scholar
  203. Hedges SB (2004) Molecular clocks and a biological trigger for Neoproterozoic snowball earth events and the Cambrian explosion. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossil record. Taylor & Francis, London, pp 27–40Google Scholar
  204. Hedges SB (2009) Life. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 89–98Google Scholar
  205. Hendy AJW (2009) The influence of lithification on Cenozoic marine biodiversity trends. Paleobiology 35:51–62Google Scholar
  206. Heydari E, Arzani N, Hassanzadeh J (2008) Mantle plume: the invisible killer – application to the Permian-Triassic boundary mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 264:147–162Google Scholar
  207. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobson SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19:867–871Google Scholar
  208. Hoffman PF (2009) Pan-glacial – a third state in the climate system. Geol Today 25(3):100–107Google Scholar
  209. Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–155Google Scholar
  210. Hoffman PF, Kaufman AJ, Halverson GP, Shrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346PubMedGoogle Scholar
  211. Hofmann HJ (1994) Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 342–357Google Scholar
  212. Hofmann HJ, Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 321–360Google Scholar
  213. Holland HD (1994) Early Proterozoic atmospheric change. In: Bengtson S (ed) Early life on earth. Nobel symposium no 84. Columbia University Press, New York, pp 237–244Google Scholar
  214. Hooker JJ, Collinson ME, Sille NP (2004) Eocene- oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. J Geol Soc Lond 161:161–172Google Scholar
  215. Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth—the impact of the physical environment. Academic, Amsterdam, pp 237–244Google Scholar
  216. Hsu KJ, McKenzie JA (1985) A Strangelove ocean in the earliest Tertiary. In: Sundquist ET, Broecker W (eds) The carbon cycle and atmospheric CO2: natural variation Archean to present, vol 32, Geophys Monogr Series., American Geophysical Union, Washington, pp 487–492Google Scholar
  217. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276:245–247PubMedGoogle Scholar
  218. Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308:398–401PubMedGoogle Scholar
  219. Huldtgren T, Cunningham JA, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S (2011) Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science 334:1696–1699PubMedGoogle Scholar
  220. Hurlbert S, Archibald JD (1995) No evidence of sudden (or gradual) dinosaur extinction at the K/T boundary. Geology 23:881–884Google Scholar
  221. Huynh TT, Poulsen CJ (2004) Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 217:223–242Google Scholar
  222. Ivany LC, Nesbitt EA, Prothero DR (2003) The marine Eocene-Oligocene transition: a synthesis. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York, pp 522–534Google Scholar
  223. Jablonski D (1986) Causes and consequences of mass extinctions. In: Elliot DK (ed) Dynamics of extinction. Wiley, New York, pp 183–229Google Scholar
  224. Jablonski D (1994) Extinctions in the fossil record. Philos Trans R Soc Lond B 344:11–17Google Scholar
  225. Jablonski D (2001) Lessons from the past: evolutionary impacts of mass extinctions. Proc Natl Acad Sci 98:5393–5398PubMedCentralPubMedGoogle Scholar
  226. Jablonski D (2003) The interplay of physical and biotic factors in macroevolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 235–252Google Scholar
  227. Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS (2003) The impact of the pull of the recent on the history of marine diversity. Science 300:1133–1135PubMedGoogle Scholar
  228. Jenkins RJF (1992) Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 131–176Google Scholar
  229. Jensen S, Droser ML, Gehling JG (2006) A critical look at the Ediacaran trace fossil record. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology, vol 27, Topics in geobiology., Springer, Dordrecht, pp 115–157Google Scholar
  230. Jia-Yu R, Xu C, Harper DAT (2002) The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35:231–249Google Scholar
  231. Johnson CN (2002) Determinants of loss of mammal species during the Late Quarternary “megafauna” extinctions: life history and ecology, but not body size. Proc R Soc Lond B 269:2221–2227Google Scholar
  232. Kauffman EG, Erwin DH (1995) Surviving mass extinctions. Geotimes 40(3):14–17Google Scholar
  233. Keller G (2012) The Cretaceous-Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 759–793Google Scholar
  234. Keller G, Adatte T (2011) The end-Cretaceous mass extinction and the Chicxulub impact in Texas. SEPM Spec Publ 100:1–313Google Scholar
  235. Keller G, Stinnesbeck W, Adatte T, Stüben D (2003) Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci Rev 62:327–363Google Scholar
  236. Kelley SP (2003) Volcanic inputs. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 209–248Google Scholar
  237. Kelley PH, Hansen TA (2001) Mesozoic marine revolution. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 94–97Google Scholar
  238. Kennett JP, Exon NF (2004) Paleoceanographic evolution of the Tasmanian seaway and its climatic implications. In: Exon NF, Kennett JP, Malone M (eds) The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica, vol 151, Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 345–367Google Scholar
  239. Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc Lond B 367:519–536Google Scholar
  240. Kidwell SM (2005) Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914–917PubMedGoogle Scholar
  241. Kirschvink JL (1992) Late Proterozoic low latitude global glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  242. Knoll AH (1994) Proterozoic and Early Cambrian protists: evidence for accelerating evolutionary tempo. Proc Natl Acad Sci 91:6743–6750PubMedCentralPubMedGoogle Scholar
  243. Knoll AH (1996) Breathing room for early animals. Nature 382:111–112PubMedGoogle Scholar
  244. Knoll AH (2013) Systems paleobiology. GSA Bull 125:3–13Google Scholar
  245. Knoll AH, Bambach RK (2000) Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective (supplement to paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 1–14Google Scholar
  246. Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137PubMedGoogle Scholar
  247. Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2004) A new period for the geologic time scale. Science 305:621–622PubMedGoogle Scholar
  248. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond B 361:1023–1038Google Scholar
  249. Koch PL, Barnosky AD (2006) Late Quarternary extinctions: state of the debate. Annu Rev Ecol Evol Syst 37:215–250Google Scholar
  250. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climatic disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102:11131–11136PubMedCentralPubMedGoogle Scholar
  251. Korb KB, Dorin A (2011) Evolution unbound: releasing the arrow of complexity. Biol Philos 26:317–338Google Scholar
  252. Kosnik MA, Alroy J, Behrensmeyer AK, Fürsich FT, Gastaldo RA, Kidwell SM, Kowalewski M, Plotnick RE, Rogers RR, Wagner PJ (2011) Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology 37:303–331Google Scholar
  253. Kouchinsky A, Bengtson S, Runnegar B, Skovsted C, Steiner M, Vendrasco M (2012) Chronology of early Cambrian biomineralization. Geol Mag 149:221–251Google Scholar
  254. Kramers JD (2007) Hierarchical Earth accretion and the Hadean Eon. J Geol Soc (Lond) 164:3–17Google Scholar
  255. Krug AZ, Jablonski D, Valentine JW, Roy K (2009) Generation of Earth’s first-order biodiversity pattern. Astrobiology 9:113–124PubMedGoogle Scholar
  256. Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 152:173–187Google Scholar
  257. Kump LR, Kasting JF, Crane RG (2004) The earth system, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  258. Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33:397–400Google Scholar
  259. Labandeira CC (1999) Insects and other hexapods. In: Singer R (ed) Encyclopedia of paleontology, vol 1. Fitzroy Dearborn Publishers, Chicago, pp 603–624Google Scholar
  260. Labandeira CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315PubMedGoogle Scholar
  261. Lamb DM, Awramik SM, Chapman DJ, Zhu S (2009) Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res 173:93–104Google Scholar
  262. Lane A, Janis CM, Sepkoski JJ Jr (2005) Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology 31:21–34Google Scholar
  263. Lazcano A (2001) Origin of life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 3–8Google Scholar
  264. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the RNA world, and time. Cell 85:793–796PubMedGoogle Scholar
  265. Legendre S, Hartenberger J-L (1992) Evolution of mammalian faunas in Europe during the Eocene and Oligocene. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 516–528Google Scholar
  266. Lenton TM (2003) The coupled evolution of life and atmospheric oxygen. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth. Academic, Amsterdam, pp 35–53Google Scholar
  267. Lenton TM, Crouch M, Johnson M, Pires N, Dolan L (2012) First plants cooled the Ordovician. Nat Geosci 5:86–89Google Scholar
  268. Lieberman BS (2003) Taking the pulse of the Cambrian radiation. Integr Comp Biol (formerly Am Zool) 43:229–237Google Scholar
  269. Lilley DMJ, Sutherland J (2011) The chemical origins of life and ist early evolution: an introduction. Philos Trans R Soc Lond B 366:2853–2856Google Scholar
  270. Lloyd GT, Friedman M (2013) A survey of palaeontological sampling biases in fishes based on the Phanerozoic record of Great Britain. Palaeogeogr Palaeoclimatol Palaeoecol 372:5–17Google Scholar
  271. Lo C-H, Chung S-L, Lee T-Y, Wu G (2002) Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet Sci Lett 198:449–458Google Scholar
  272. Longrich NR, Bhullar B-AS, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci 109:21396–21401PubMedCentralPubMedGoogle Scholar
  273. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721PubMedGoogle Scholar
  274. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford, p 324Google Scholar
  275. Lucas SG (1994) Triassic tetrapod extinctions and the compiled correlation effect. Can Soc Petrol Geol Mem 17:869–875Google Scholar
  276. MacLeod N (1998) Impacts and marine invertebrate extinctions. In: Grady MM, Hutchinson R, McGall GJH, Rotherby DA (eds) Meteorites: flux with time and impact effects. Geological Society of London special paper 140. The Geological Society, London, pp 217–246Google Scholar
  277. MacLeod N (2003) The causes of Phanerozoic extinctions. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth. Academic, Amsterdam, pp 253–277Google Scholar
  278. MacLeod N (2013) The great extinctions: what causes them and how they shape life. Natural History Museum, LondonGoogle Scholar
  279. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc Lond 154:265–292Google Scholar
  280. Madin JS, Alroy J, Aberhan M, Fürsich FT, Kiessling W, Kosnik MA, Wagner PJ (2006) Statistical independence of escalatory ecological trends in Phanerozoic marine invertebrates. Science 312:897–900PubMedGoogle Scholar
  281. Margulis L (1981) Symbiosis in cell evolution: life and its environment on the early earth. W. H. Freeman, San FranciscoGoogle Scholar
  282. Marshall CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16:1–10Google Scholar
  283. Marshall CR (2006) Explaining the Cambrian “explosion” of animals. Annu Rev Earth Planet Sci 34:355–384Google Scholar
  284. Marshall CR (2010) Marine biodiversity dynamics over deep time. Science 329:1156–1157PubMedGoogle Scholar
  285. Martin PS (1984) Prehistoric overkill: a global model. In: Martin PS, Klein RG (eds) Quarternary extinctions. University of Arizona Press, Tucson, pp 354–403Google Scholar
  286. Martin F (1993) Acritarchs: a review. Biol Rev Camb Philos Soc 68:475–538Google Scholar
  287. Martin RE (1996) Secular increase in nutrient levels through the phanerozoic: implications for productivity, biomass and diversity of the marine biosphere. Palaios 11:209–219Google Scholar
  288. Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL (2000) Age of Neoproterozoic bilaterian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288:841–845PubMedGoogle Scholar
  289. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200- million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284:616–618PubMedGoogle Scholar
  290. Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24PubMedGoogle Scholar
  291. May RM, Lawton JH, Stork NE (1995) Assessing extinction rates. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 1–24Google Scholar
  292. McCall GJH (2006) The Vendian (Ediacaran) in the geological record: enigmas in geology’s prelude to the Cambrian explosion. Earth Sci Rev 77:1–229Google Scholar
  293. McClendon JH (1999) The origin of life. Earth Sci Rev 47:71–93Google Scholar
  294. McCollom TM (2013) Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu Rev Earth Planet Sci 401:10.1–10.23Google Scholar
  295. McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557PubMedGoogle Scholar
  296. McGhee GR Jr (1996) The Late Devonian mass extinction. Columbia University Press, New YorkGoogle Scholar
  297. McGhee GR Jr (2001) Late Devonian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 223–226Google Scholar
  298. McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeoclimatol Palaeoecol 211:289–297Google Scholar
  299. McGlone M (2012) The hunters did it. Science 335:1452–1453PubMedGoogle Scholar
  300. McKinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516Google Scholar
  301. McKinney ML (2001) Selectivity during extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 198–202Google Scholar
  302. McMenamin MAS, McMenamin DLS (1990) The emergence of animals: the Cambrian breakthrough. Columbia University Press, New YorkGoogle Scholar
  303. McRoberts CA, Krystyn L, Hautmann M (2012) Macrofaunal response to the End-Triassic mass extinction in the West-Tethyan Kössen Basin, Austria. Palaios 27:607–616Google Scholar
  304. McShea DW, Brandon RN (2010) Biology’s First Law: the tendency for diversity and complexity to increase in evolutionary systems. Chicago University Press, ChicagoGoogle Scholar
  305. Melott AL, Bambach RK (2011a) A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. I. Documentation. Paleobiology 37:92–112Google Scholar
  306. Melott AL, Bambach RK (2011b) A ubiquitous ~62-Myr periodic fluctuation superimposed on general trends in fossil biodiversity. II. Evolutionary dynamics associated with periodic fluctuation in marine diversity. Paleobiology 37:383–408Google Scholar
  307. Melott AL, Bambach RK, Petersen KD, McArthur JM (2012) An 62-million-year periodicity is common to marine 87Sr/86Sr, fossil biodiversity, and large-scale sedimentation: what does the periodicity reflect? J Geol 120:217–226Google Scholar
  308. Mendelson CV, Schopf JW (1992) Proterozoic and selected Early Cambrian microfossils and microfossil-like objects. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 865–951Google Scholar
  309. Miller AI (1997) Dissecting global diversity patterns: examples from the Ordovician radiation. Annu Rev Ecol Syst 28:85–104PubMedGoogle Scholar
  310. Miller AI (1998) Biotic transitions in global marine diversity. Science 281:1157–1160PubMedGoogle Scholar
  311. Miller AI (2000) Conversations about Phanerozoic global diversity. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective (supplement to Paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 53–73Google Scholar
  312. Miller AI (2001) Ordovician radiation. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 49–52Google Scholar
  313. Miller AI (2003) On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology 29:15–18Google Scholar
  314. Miller AI (2004) The Ordovician radiation: towards a new global synthesis. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 380–388Google Scholar
  315. Miller AI (2012) The Ordovician radiation: macroevolutionary crossroads of the Phanerozoic. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 49–52Google Scholar
  316. Miller SL, Lazcano A (2002) Formation of the building blocks of life. In: Schopf JW (ed) Life’s origin: the beginnings of biological evolution. University of California Press, Berkeley, pp 78–112Google Scholar
  317. Monroe JB, Wicander R (2011) The changing earth: exploring geology and evolution, 7th edn. Brooks/Cole, BelmontGoogle Scholar
  318. Mooers AØ, Redfield RJ (1996) Digging up the roots of life. Nature 379:587–588PubMedGoogle Scholar
  319. Narbonne GM (2004) Modular construction of early Ediacaran complex life forms. Science 305:1141–1144PubMedGoogle Scholar
  320. Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442Google Scholar
  321. Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31:27–30Google Scholar
  322. Nedin C (1995) The Emu Bay Shale, a Lower Cambrian fossil Lagerstätte, Kangaroo Island, South Australia. Mem Assoc Australas Palaeontol 18:31–40Google Scholar
  323. Nelson DR (2004) Earths formation and first billion years. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 3–27Google Scholar
  324. Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spec Pap 89:63–91Google Scholar
  325. Nichols DJ, Johnson KR (2008) Plants and the K-T boundary. Cambridge University Press, CambridgeGoogle Scholar
  326. Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, ChicagoGoogle Scholar
  327. Niklas KJ (2004) Computer models of early land plant evolution. Annu Rev Earth Planet Sci 32:47–66Google Scholar
  328. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091PubMedGoogle Scholar
  329. Nisbet EG, Sleep NH (2003) The physical setting for early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth. Academic, Amsterdam, pp 3–24Google Scholar
  330. Norris RD (2001) Impact of K-T boundary events on marine life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 229–231Google Scholar
  331. Nott MP, Rogers E, Pimm S (1995) Modern extinctions in the kilo-death range. Curr Biol 5(1):14–17PubMedGoogle Scholar
  332. Ogg JG, Hinov LA (2012a) Jurassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 731–791Google Scholar
  333. Ogg JG, Hinov LA (2012b) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 793–854Google Scholar
  334. Ohmoto O, Watanabe Y, Kumazawa K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ∼ 1.8 billion years ago. Nature 429:395–399PubMedGoogle Scholar
  335. Olsen PE, Fowell SJ, Cornet B (1990) The Triassic/Jurassic boundary in continental rocks of eastern North America; a progress report. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history: an international conference on impacts, volcanism, and mass mortality. Geological Society of America special paper 247, Boulder, Colorado. pp 585–593Google Scholar
  336. Olsen PE, Koeberl C, Huber H, Montanari A, Fowell SJ, Et- Touhani M, Kent DV (2002) The continental Triassic-Jurassic boundary in central Pangea: recent progress and preliminary report of an Ir anomaly. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond. Geological Society of America special paper 356. Boulder, Colorado, pp 505–522Google Scholar
  337. Oró J, Miller SL, Lazcano A (1990) The origin and early evolution of life on earth. Annu Rev Earth Planet Sci 18:317–356PubMedGoogle Scholar
  338. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740PubMedGoogle Scholar
  339. Pälike H, Norris RD, Herrle JO, Wilson PA, Coxall HK, Lear CH, Shackleton NJ, Tripati AK, Wade BS (2006) The heartbeat of the Oligocene climate system. Science 314:1894–1898PubMedGoogle Scholar
  340. Parker A (2003) In the blink of an eye: the cause of the most dramatic event in the history of life. Free Press, LondonGoogle Scholar
  341. Payne JL, Clapham ME (2012) End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu Rev Earth Planet Sci 40:89–111Google Scholar
  342. Payne JL, Lehrmann DJ, Wie J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305:506–509PubMedGoogle Scholar
  343. Peng S, Babcock LE, Cooper RA (2012) The Cambrian period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 437–487Google Scholar
  344. Pennisi E (2003) Modernizing the tree of life. Science 300:1692–1697PubMedGoogle Scholar
  345. Peretó J (2011) Origin and evolution of metabolisms. In: Gargaud M, López-García, Martin H (eds) Origins and evolution of life. An astrobiological perspective. Cambridge University Press, Cambridge, pp 270–287Google Scholar
  346. Peters SE (2008) Environmental determinants of extinction selectivity in the fossil record. Nature 454:626–630PubMedGoogle Scholar
  347. Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583–601Google Scholar
  348. Peterson KJ, Butterfield NJ (2005) Origin of the eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci 102:9547–9552PubMedCentralPubMedGoogle Scholar
  349. Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci 101:6536–6541PubMedCentralPubMedGoogle Scholar
  350. Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc Lond B 363:1435–1443Google Scholar
  351. Pflug HD (1978) Früheste bisher bekannte Lebewesen: Isuasphaera isua n. gen. n. spec. aus der Isua-Serie von Grönland (ca. 3800 Mio. J.). Oberhess Naturwiss Zeitschr 44:131–145Google Scholar
  352. Phillips J (1860) Life on the Earth. Macmillan Press, CambridgeGoogle Scholar
  353. Pierrehumbert RT, Abbot DS, Voigt A, Knoll D (2011) Climate of the Neoproterozoic. Annu Rev Earth Planet Sci 39:417–460Google Scholar
  354. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350PubMedGoogle Scholar
  355. Poag CW, Mankinen E, Norris RD (2003) Late Eocene impacts: geologic record, correlation, and paleoenvironmental consequences. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: the marine Eocene-Oligocene transition. Columbia University Press, New York, pp 495–510Google Scholar
  356. Porter S (2011) The rise of predators. Geology 39:607–608Google Scholar
  357. Poulsen CJ (2003) Absence of runaway ice-albedo feedback in the Neoproterozoic. Geology 31:473–476Google Scholar
  358. Prokoph A, Bilali HE, Ernst R (2013) Periodicities in the emplacement of large igneous provinces through the Phanerozoic: relations to ocean chemistry and marine biodiversity evolution. Geosci Front 4:263–276Google Scholar
  359. Prothero DR (1994) The Eocene-Oligocene transition: paradise lost. Columbia University Press, New YorkGoogle Scholar
  360. Prothero DR (2006) After the dinosaurs: the age of mammals. Indiana University Press, BloomingtonGoogle Scholar
  361. Racki G (2005) Toward understanding Late Devonian extinction hypotheses: few answers, many questions. In: Over DJ, Morrow JR, Wignall PB (eds) Understanding Late Devonian and Permian-Triassic biotic and climatic events: towards an integrated approach. Elsevier, Amsterdam, pp 5–36Google Scholar
  362. Racki G (2012) The Alvarez impact theory of mass extinction; limits to its applicability and the “great expectations syndrome”. Acta Palaeontol Pol 57:681–702Google Scholar
  363. Rasmussen CMØ, Harper DAT (2011) Did the amalgamation of continents drive the end Ordovician mass extinctions? Palaeogeogr Palaeoclimatol Palaeoecol 311:48–62Google Scholar
  364. Raup DM (1972) Taxonomic diversity during the Phanerozoic. Science 177:1065–1071PubMedGoogle Scholar
  365. Raup DM (1976a) Species diversity in the Phanerozoic: a tabulation. Paleobiology 2:279–288Google Scholar
  366. Raup DM (1976b) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–297Google Scholar
  367. Raup DM (1991a) A kill curve for Phanerozoic marine species. Paleobiology 17:37–48PubMedGoogle Scholar
  368. Raup DM (1991b) Extinction: bad genes or bad luck? Norton, New York, p 210Google Scholar
  369. Raup DM, Sepkoski JJ Jr (1982) Mass extinctions in the marine fossil record. Science 215:1501–1503PubMedGoogle Scholar
  370. Raup DM, Sepkoski JJ Jr (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci 81:801–805PubMedCentralPubMedGoogle Scholar
  371. Raven J, Skene K (2003) Chemistry of the early oceans: the environment of early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth—the impact of the physical environment. Academic, Amsterdam, pp 55–64Google Scholar
  372. Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS III, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339:684–687PubMedGoogle Scholar
  373. Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92PubMedGoogle Scholar
  374. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci 102:18497–18501PubMedCentralPubMedGoogle Scholar
  375. Ridgwell A (2005) A mid-Mesozoic revolution in the regulation of ocean chemistry. Mar Geol 217:339–357Google Scholar
  376. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–51Google Scholar
  377. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(suppl 1):179–214Google Scholar
  378. Riding R (2006a) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238Google Scholar
  379. Riding R (2006b) Cyanobacterial calcification, carbon dioxide concentrating mechanism, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316Google Scholar
  380. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155PubMedGoogle Scholar
  381. Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434:208–210PubMedGoogle Scholar
  382. Ronov AB (1983) The earth’s sedimentary shell: quantitative patterns of its structure, composition, and evolution. American Geological Institute (AGI Reprint series 5), Alexandria, pp 1–80Google Scholar
  383. Rosslenbroich B (2006) The notion of progress in evolutionary biology – the unresolved problem and an empirical suggestion. Biol Philos 21:41–70Google Scholar
  384. Roy K (2001) Pleistocene extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 234–237Google Scholar
  385. Royer DL, Berner RA, Beerling DJ (2000) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci Rev 54:349–392Google Scholar
  386. Rozanov AY, Zhuravlev AY (1992) The lower Cambrian fossil record of the Soviet Union. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, vol 10, Topics in geobiology. Plenum Press, New York, pp 205–282Google Scholar
  387. Ruddiman WF (2013) The Anthropocene. Annu Rev Earth Planet Sci 41:4.1–4.24Google Scholar
  388. Sahney S, Benton MJ (2008) Recovery from the most profound mass extinction of all time. Proc R Soc B 275:759–765PubMedCentralPubMedGoogle Scholar
  389. Sandberg CA, Morrow JR, Ziegler W (2002) Late Devonian sea-level changes, catastrophic events, and mass extinctions. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, Geological Society of America Special Paper 356., Boulder, Colorad, pp 473–487Google Scholar
  390. Schmitz BD, Harper AT, Peucker-Ehrenbrink B, Stouge S, Alwmark C, Cronholm A, Bergstrom SM, Tassinari M, Xiaofeng WF (2008) Asteroid breakup linked to the great Ordovician biodiversification event. Nat Geosci 1:49–53Google Scholar
  391. Schopf JW (1992a) The oldest fossils and what they mean. In: Schopf JW (ed) Major events in the history of life. Jones & Bartlett, Boston, pp 29–63Google Scholar
  392. Schopf JW (1992b) Atlas of representative Proterozoic microfossils. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 1055–1117Google Scholar
  393. Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646PubMedGoogle Scholar
  394. Schopf JW (1999) Cradle of life: the discovery of earth’s earliest fossils. Princeton University Press, PrincetonGoogle Scholar
  395. Schopf JW (2002) When did life begin? In: Schopf JW (ed) Life’s origin: the beginnings of biological evolution. University of California Press, Berkeley, pp 158–179Google Scholar
  396. Schopf JW (2004) Earth’s earliest biosphere: status of the hunt. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 516–539Google Scholar
  397. Schopf JW (2006) Fossil evidence of Archean life. Philos Trans R Soc Lond B 361:869–885Google Scholar
  398. Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22:761–771Google Scholar
  399. Schubert JK, Bottjer DJ (1992) Early Triassic stromatolites as post-mass extinction disaster forms. Geology 20:883–886Google Scholar
  400. Schulte P, Alegret L, Arenilla I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218PubMedGoogle Scholar
  401. Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239Google Scholar
  402. Seilacher A (1992) Vendobionta and psammocorallia: lost constructions of Precambrian evolution. J Geol Soc Lond 149:607–613Google Scholar
  403. Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93Google Scholar
  404. Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80–83PubMedGoogle Scholar
  405. Seldon P, Nudds J (2012) Evolution of fossil ecosystems, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  406. Sepkoski JJ Jr (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222–251Google Scholar
  407. Sepkoski JJ Jr (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7:36–53Google Scholar
  408. Sepkoski JJ Jr (1982) A compendium of fossil marine families. Milwaukee Public Mus Contrib Biol Geol 51:1–125Google Scholar
  409. Sepkoski JJ Jr (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10:246–267Google Scholar
  410. Sepkoski JJ Jr (1990) Periodicity. In: Briggs DEG, Crowther PR (eds) Palaeobiology—a synthesis. Blackwell Scientific, Oxford, pp 171–179Google Scholar
  411. Sepkoski JJ Jr (1992) A compendium of fossil marine families, 2nd edn. Milwaukee Public Mus Contrib Biol Geol 83:1–156Google Scholar
  412. Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 31–51Google Scholar
  413. Sepkoski JJ Jr (1997) Biodiversity: past, present, and future. J Paleontol 71:533–539PubMedGoogle Scholar
  414. Sepkoski JJ Jr (2002) A compendium of fossil marine animal genera. In: Jablonski D, Foote M (eds). Bull Am Paleontol 363:1–563.Google Scholar
  415. Sepkoski JJ Jr, Bambach RK, Raup DM, Valentine JW (1981) Phanerozoic marine diversity and the fossil record. Nature 293:435–437Google Scholar
  416. Servais T, Harper DAT, Li J, Munnecke A, Owen AW, Sheehan PM (2009) Understanding the Great Ordovician Biodiversification Event (GOBE): influences of paleogeography, paleoclimate, or paleoecology? GSA Today 19:4–10Google Scholar
  417. Servais T, Owen AW, Harper DAT, Kröger B, Munnecke A (2010) The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeogr Palaeoclimatol Palaeoecol 294:99–119Google Scholar
  418. Sheehan PM (1996) A new look at ecological evolutionary unites (EEUs). Palaeogeogr Palaeoclimatol Palaeoecol 127:21–32Google Scholar
  419. Sheehan PM (2001a) History of marine biodiversity. Geol J 36:231–249Google Scholar
  420. Sheehan PM (2001b) The Late Ordovician mass extinction. Annu Rev Ecol Syst 29:331–364Google Scholar
  421. Sheehan PM, Harris MT (2004) Microbialite resurgence after the Late Ordovician extinction. Nature 430:75–78PubMedGoogle Scholar
  422. Shen S, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao C, Jin Y (2011) Calibrating the end-Permian mass extinction. Science 334:1367–1372PubMedGoogle Scholar
  423. Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20:1–14Google Scholar
  424. Shields-Zhou G, Och L (2011) The case for a Neoproterozoic oxygenation event: geochemical evidence and biological consequences. GSA Today 21(3):4–11Google Scholar
  425. Shu D-G, Conway Morris S, Han J, Li Y, Zhang X-L, Hua H, Zhang Z-F, Liu J-N, Guo J-F, Yasui K (2006) Lower Cambrian Vendobionts from China and early diploblast evolution. Science 312:731–734PubMedGoogle Scholar
  426. Signor PW (1985) Real and apparent trends in species richness through time. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, pp 129–150Google Scholar
  427. Signor PW (1990) The geologic history of diversity. Annu Rev Ecol Syst 21:509–539Google Scholar
  428. Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap 190:291–296Google Scholar
  429. Simonson BM (2003) Origin and evolution of large Precambrian iron formations. Geol Soc Am Spec Pap 370:231–244Google Scholar
  430. Simpson GG (1960) The history of life. In: Tax S (ed) Evolution after Darwin. vol I: the evolution of life: its origin, history and future. University of Chicago Press, Chicago, pp 117–180Google Scholar
  431. Skelton PW (2003) Changing climate and biota—the marine record. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 163–184Google Scholar
  432. Sleep NH, Bird DK (2007) Niches of the pre-photosynthetic biosphere and geologic preservation of Earth’s earliest ecology. Geobiology 5:101–117Google Scholar
  433. Smith AB (2001) Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. Philos Trans R Soc Lond B 356:351–367Google Scholar
  434. Smith AB (2003) Getting the measure of diversity. Paleobiology 29:34–36Google Scholar
  435. Smith AB (2007) Marine diversity through the Phanerozoic: problems and prospects. J Geol Soc (Lond) 164:731–745Google Scholar
  436. Smith AB, McGowan AJ (2011) The ties linking rock and fossil records and why they are important for paleobiodiversity studies. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil record: implications for biodiversity studies. Geological Society of London special paper 358. The Geological Society, London, pp 1–7Google Scholar
  437. Song H, Wignall PB, Tong J, Yin H (2013) Two pulses of extinction during the Permian–Triassic crisis. Nat Geosci 6:52–56Google Scholar
  438. Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Natl Acad Sci 70:1486–1489PubMedCentralPubMedGoogle Scholar
  439. Stanley SM (1977) Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam A (ed) Patterns of evolution as illustrated by the fossil record, vol 5, Developments in Palaeontology and Stratigraphy. Elsevier, Amsterdam, pp 209–250Google Scholar
  440. Stanley SM (1988) Paleozoic mass extinctions: shared patterns suggest global cooling as a common cause. Am J Sci 288:334–352Google Scholar
  441. Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems, vol 17, Topics in geobiology. Academic/Plenum, New York, pp 1–39Google Scholar
  442. Stanley SM (2009) Earth system history, 3rd edn. Freeman, New YorkGoogle Scholar
  443. Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans R Soc Lond A 369:842–867Google Scholar
  444. Stehlin HG (1909) Remarques sur les faunules de mammifères des couches éocènes et oligocènes du Bassin de Paris. Bull Soc Geol Fr 4(9):488–520Google Scholar
  445. Steiper ME, Young NM (2009) Primates (Primates). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 482–486Google Scholar
  446. Stigall AL (2012) Speciation collapse and invasive species dynamics during the Late Devonian “Mass Extinction”. GSA Today 22:4–9Google Scholar
  447. Stokstad E (2004) Controversial fossil could shed light on early animals’ blueprint. Science 304:1425PubMedGoogle Scholar
  448. Storch V, Welsch U, Wink M (2013) Evolutionsbiologie, 3rd edn. Springer, BerlinGoogle Scholar
  449. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the early Triassic greenhouse. Science 338:366–370PubMedGoogle Scholar
  450. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139Google Scholar
  451. Taylor PD (2004) Extinction and the fossil record. In: Taylor PD (ed) Extinctions in the history of life. Cambridge University Press, Cambridge, pp 1–34Google Scholar
  452. Taylor WR (2005) Stirring the primordial soup. RNA world: does changing the direction of replication make RNA life viable? Nature 434:705PubMedGoogle Scholar
  453. Taylor SR (2007) The formation of the earth and moon. In: Van Kranendonk MJ, Smithies RH, Bennett V (eds) Earth’s Oldest Rocks. Developments in Precambrian Geology 15:21–30. Elsevier, AmsterdamGoogle Scholar
  454. Taylor TN, Taylor EL, Krings M (2009) Paleobotany. The biology and evolution of fossil plants, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  455. Teichert C (1990) The Permian-Triassic boundary revisited. In: Kauffman EG, Walliser OH (eds) Extinction events in earth history. Springer, Berlin, pp 199–238Google Scholar
  456. Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, vol 3, Topics in geobiology. Plenum Press, New York, pp 479–595Google Scholar
  457. Theobald DL (2010) A formal test of the theory of universal common ancestry. Nature 465:219–222PubMedGoogle Scholar
  458. Trotter JA, Williams IS, Barnes CR, Lecuyer C, Nicoll RS (2008) Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321:550–554PubMedGoogle Scholar
  459. Twitchett RJ (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 154:27–37Google Scholar
  460. Twitchett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232:190–213Google Scholar
  461. Upchurch P, Mannion PD, Benson RBL, Butler RJ, Carrano MT (2011) Geological and anthropogenic controls on the sampling of the terrestrial fossil record: case study from the Dinosauria. In: McGowan AJ, Smith AB (eds) Comparing the rock and fossil records: implications for biodiversity studies, Geological Society Special Publication 358. The Geological Society, London, pp 209–240Google Scholar
  462. Valentine JW (1969) Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleobiology 12:684–709Google Scholar
  463. Valentine JW (ed) (1985) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, PrincetonGoogle Scholar
  464. Valentine JW (2002) Prelude to the Cambrian explosion. Annu Rev Earth Planet Sci 30:285–306Google Scholar
  465. Valentine JW (2004) On the origin of phyla. Chicago University Press, ChicagoGoogle Scholar
  466. Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development 126:851–859PubMedGoogle Scholar
  467. Van Kranendonk MJ (2012) A chronostratigraphic division of the Precambrian. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 1. Elsevier, Amsterdam, pp 299–392Google Scholar
  468. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the c. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124Google Scholar
  469. Vandenberghe N, Hilgen FJ, Speijer RP (2012) The Paleogene period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 855–921Google Scholar
  470. Vaughan APM (2007) Climate and geology – a Phanerozoic perspective. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep-time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications. The Geological Society, London, pp 5–59Google Scholar
  471. Ver Straeten CA, Brett CE, Sageman BB (2011) Mudrock sequence stratigraphy: a multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeogr Palaeoclimatol Palaeoecol 304:54–73Google Scholar
  472. Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258Google Scholar
  473. Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, PrincetonGoogle Scholar
  474. Vermeij GJ (1995) Economics, volcanoes, and Phanerozoic revolutions. Paleobiology 21:125–152Google Scholar
  475. Vermeij GJ (2004) Nature: an economic history. Princeton University Press, PrincetonGoogle Scholar
  476. Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci 93:2155–2158PubMedCentralPubMedGoogle Scholar
  477. Wacey D (2009) Early life on earth. A practical guide, vol 31, Topics in geobiology. Springer, HeidelbergGoogle Scholar
  478. Wacey D, McLoughlin N, Brasier MD (2009) Looking through windows onto the earliest history of life on Earth and Mars. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Heidelberg, pp 41–68Google Scholar
  479. Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289:1307–1308PubMedGoogle Scholar
  480. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B 361:1787–1808Google Scholar
  481. Wade M (1972a) Dickinsonia: Polychaete worms from the late Precambrian Ediacara fauna, South Australia. Mem Qld Mus 16:171–190Google Scholar
  482. Wade M (1972b) Hydrozoa and scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology 15:197–225Google Scholar
  483. Walliser OH (1996) Global events in the Devonian and carboniferous. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 225–250Google Scholar
  484. Walter MR (1983) Archaean stromatolites: evidence of the earth’s earliest benthos. In: Schopf JW (ed) Earth’s earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 187–213Google Scholar
  485. Walter MR (2001) Stromatolites. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 376–379Google Scholar
  486. Wang SC (2003) On the continuity of background and mass extinction. Paleobiology 29:455–467Google Scholar
  487. Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100Google Scholar
  488. Ward PD (1983) The extinction of ammonites. Sci Am 249:136–147Google Scholar
  489. Ward PD (1990) The Cretaceous/Tertiary extinction in the marine realm: a 1990 perspective. Geol Soc Am Spec Pap 247:425–432Google Scholar
  490. Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307:709–714PubMedGoogle Scholar
  491. Webby BD (2004) Introduction. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 1–37Google Scholar
  492. Westall F (2012) The early earth. In: Impey C, Lunine J, Funes J (eds) Frontiers of astrobiology. Cambridge University Press, Cambridge, pp 89–114Google Scholar
  493. Westrop SR, Adrain JM (1998) Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24:1–16Google Scholar
  494. White RV (2002) Earth’s biggest “whodunnit”: unraveling the clues in the case of the end-Permian mass extinction. Philos Trans R Soc Lond A 360:2963–2985Google Scholar
  495. Wignall PB (2001a) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33Google Scholar
  496. Wignall PB (2001b) End-Permian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, pp 226–229Google Scholar
  497. Wignall PB (2004) Causes of mass extinction. In: Taylor PD (ed) Extinctions in the history of life. Cambridge University Press, Cambridge, pp 119–150Google Scholar
  498. Wignall PB (2008) The end-Permian crisis, aftermath and subsequent recovery. In: Okada H, Mawatari SF, Suzuki N, Gautam P (eds) Origin and evolution of natural diversity. Sapporo, Hokkaido University, Hokkaido, pp 43–8Google Scholar
  499. Wignall PB, Bond DPG (2008) The end-Triassic and Early Jurassic mass extinction records in the British Isles. Proc Geol Assoc 119:73–84Google Scholar
  500. Wignall PB, Hallam A (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc Lond 156:453–456Google Scholar
  501. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end-Permian mass extinction. Science 272:1155–1158PubMedGoogle Scholar
  502. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178PubMedGoogle Scholar
  503. Williams BA, Kay RF, Kirk EC (2010) New perspectives on anthropoid origins. Proc Natl Acad Sci 107:4797–4804.PubMedCentralPubMedGoogle Scholar
  504. Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, OxfordGoogle Scholar
  505. Wills MA (2001) Morphological disparity: a primer. In: Adrain JM, Edgecombe GD, Lieberman BS (eds) Fossils, phylogeny, and form, vol 19, Topics in geobiology. Kluwer Academic/Plenum, New York, pp 55–144Google Scholar
  506. Wills MA, Briggs DEG, Fortey RA (1994) Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Paleobiology 20:93–130Google Scholar
  507. Wilson EO (1994) The diversity of life. Penguin Books, LondonGoogle Scholar
  508. Wilson MA, Palmer TJ (2001) The Ordovician bioerosion revolution. Geol Soc Am Abstr Prog 33(6):A248Google Scholar
  509. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci 95:6854–6859PubMedCentralPubMedGoogle Scholar
  510. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci 95:8742–8747Google Scholar
  511. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposals for the domains of Archaea, bacteria, and eucarya. Proc Natl Acad Sci 87:4576–4579PubMedCentralPubMedGoogle Scholar
  512. Wolfe AP, Hobbs WO, Birks HH, Briner JP, Holmgren SU, Ingolfsson O, Kaushal SS, Miller GH, Pagani M, Saros JE, Vinebrooke RD (2013) Stratigraphic expressions of the Holocene–Anthropocene transition revealed in sediments from remote lakes. Earth Sci Rev 116:17–34Google Scholar
  513. Wood R, Zhuravlev AY (2012) Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons. Earth Sci Rev 115:249–261Google Scholar
  514. Xian-guang H, Aldridge RJ, Bergström J, Siveter DJ, Xiang-hong F (2004) The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Malden, p 233Google Scholar
  515. Xiao S (2013) Muddying the waters. Nature 493:28–29PubMedGoogle Scholar
  516. Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40PubMedGoogle Scholar
  517. Xiao SH, Zhang Y, Knoll AH (1998) Three dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558Google Scholar
  518. Young GM (2004) Earth’s two great Precambrian glaciations: aftermath of the “snowball earth” hypothesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 440–448Google Scholar
  519. Zachos J, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337:61–64Google Scholar
  520. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedGoogle Scholar
  521. Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283PubMedGoogle Scholar
  522. Zalasiewicz J, Crutzen PJ, Steffen W (2012) The Anthropocene. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 2. Elsevier, Amsterdam, pp 1033–1040Google Scholar
  523. Zambito JJ, Brett CE, Baird GC (2012) The Late Middle Devonian (Givetian) global Taghanic biocrisis in its type area (Northern Appalachian Basin): geologically rapid faunal transitions driven by global and local environmental changes. In: Talent JA (ed) Earth and life: global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, Heidelberg, pp 677–703Google Scholar
  524. Zhuravlev AY, Riding R (eds) (2001) The ecology of the Cambrian radiation. Columbia University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Abteilung GeowissenschaftenNaturhistorisches Museum BaselBaselSwitzerland

Personalised recommendations