Advertisement

Model-Based Visualization of Instationary Geo-Data with Application to Volcano Ash Data

  • Martin Baumann
  • Jochen Förstner
  • Vincent Heuveline
  • Jonas Kratzke
  • Sebastian Ritterbusch
  • Bernhard Vogel
  • Heike Vogel
Living reference work entry

Latest version View entry history

Abstract

Driven by today’s supercomputers, larger and larger sets of data are created during numerical simulations of geoscientific applications. Such data often describes instationary processes in three-dimensional domains in terms of multi-dimensional data. Due to limited computer resources, it might be impossible or unpractical to store all data created during one simulation, which is why several data reduction techniques are often applied (e.g., only every nth time-step is stored). Intuitive scientific visualization techniques can help to better understand the structures described by transient data. Adequate reconstruction techniques for the time-dimension are needed since standard techniques (e.g., linear interpolation) are insufficient for many applications. We describe a general formalism for a wide class of reconstruction techniques and address aspects of quality characteristics. We propose an approach that is able to take arbitrary physical processes into account to enhance the quality of the reconstruction. For the eruption of the volcano Eyjafjallajökull in Iceland in the spring of 2010, we describe a suitable reduced model and use it for model-based visualization. The original data was created during a COSMO-ART simulation. We discuss the reconstruction errors, related computational costs, and possible extensions. A comparison with linear interpolation clearly motivates the proposed model-based reconstruction approach.

Keywords

Linear Interpolation Vertical Wind Reconstruction Approach Volcano Eruption Proper Orthogonal Decomposition Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amira 5 User’s Guide. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) and Visage Imaging (2009). http://www.amira.com
  2. Athanasopoulou E, Vogel H, Vogel B, Tsimpidi AP, Pandis SN, Knote C, Fountoukis C (2013) Modeling the meteorological and chemical effects of secondary organic aerosols during an eucaari campaign. Atmos Chem Phys 13(2):625–645. doi:10.5194/acp-13-625-2013CrossRefGoogle Scholar
  3. Avila LS (2004) The VTK users’s guide. Kitware. ISBN:1-930934-13-0Google Scholar
  4. Baldauf M, Seifert A, Förstner J, Majewski D, Raschendorfer M, Reinhardt T (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev. doi:10.1175/MWR-D-10-05013.1. e-ViewGoogle Scholar
  5. Bales P, Kolb O, Lang J (2009) Hierarchical modelling and model adaptivity for gas flow on networks. Volume 5544 of lecture notes in computer science. Springer, pp 337–346. ISBN:978-3-642-01969-2Google Scholar
  6. Bangert M, Nenes A, Vogel B, Vogel H, Barahona D, Karydis VA, Kumar P, Kottmeier C, Blahak U (2012) Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos Chem Phys 12(9):4045–4063. doi:10.5194/acp-12-4045-2012CrossRefGoogle Scholar
  7. Bonneau GP, Ertl T, Nielson G (2006) Scientific visualization: the visual extraction of knowledge from data. Mathematics and visualization. Springer, HeidelbergCrossRefGoogle Scholar
  8. Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238MathSciNetCrossRefzbMATHGoogle Scholar
  9. EnSight User Manual. Computational Engineering International, Inc., 2166 N. Salem Street, Suite 101, Apex, NC 27523, (2006). http://www.ensight.com
  10. Henderson A (2007) ParaView guide, a parallel visualization application. Kitware Inc. http://www.paraview.org/
  11. Hindmarsh AC, Gresho PM, Griffiths DF (1984) The stability of explicit euler time-integration for certain finite difference approximations of the multi-dimensional advectiondiffusion equation. Int J Numer Methods Fluids 4(9):853–897. ISSN:1097-0363, doi:10.1002/fld.1650040905, http://dx.doi.org/10.1002/fld.1650040905
  12. Introduction to GRIB. World Meteorological Organization, June 2003Google Scholar
  13. Knote C, Brunner D (2013) An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model. Atmos Chem Phys 13(3):1177–1192. doi:10.5194/acp-13-1177-2013CrossRefGoogle Scholar
  14. Kunisch K, Volkwein S (1999) Control of the burgers equation by a reduced-order approach using proper orthogonal decomposition. J Optim Theory Appl 102(2):345–371 ISSN:0022-3239, doi:http://dx.doi.org/10.1023/A:1021732508059Google Scholar
  15. Kunisch K, Volkwein S (2002) Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. J Numer Anal 40(2):492–515MathSciNetCrossRefzbMATHGoogle Scholar
  16. Kunisch K, Volkwein S (2008) Optimal snapshot location for computing pod basis functions. SFB-report, 2008-008Google Scholar
  17. Oden JT, Prudhomme S (2002) Estimation of modeling error in computational mechanics. J Comput Phys 182(2):496–515. ISSN:0021-9991, doi:10.1006/jcph.2002.7183, http://dx.doi.org/10.1006/jcph.2002.7183
  18. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120(2):303–325. doi:10.1175/1520-0493(1992)120¡0303:ACRSFN¿2.0.CO;2CrossRefGoogle Scholar
  19. Seifert A, Beheng KD (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol Atmos Phys 92:45–66. ISSN:0177-7971, doi:10.1007/s00703-005-0112-4Google Scholar
  20. Steppeler J, Doms G, Schttler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96. ISSN:0177-7971, doi:10.1007/s00703-001-0592-9Google Scholar
  21. Vogel B, Vogel H, Bäumer D, Bangert M, Lundgren K, Rinke R, Stanelle T (2009) The comprehensive model system COSMO-ART – radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys 9(22):8661–8680. doi:10.5194/acp-9-8661-2009CrossRefGoogle Scholar
  22. Vogel H, Förstner J, Vogel B, Hanish Th, Mühr B, Schättler U, Schad T (2013, submitted) Simulation of the dispersion of the Eyjafjallajökull plume over Europe with COSMO-ART in the operational mode. Atmos Chem Phys Discuss 13(5):13439–13463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Baumann
    • 1
  • Jochen Förstner
    • 2
  • Vincent Heuveline
    • 1
  • Jonas Kratzke
    • 1
  • Sebastian Ritterbusch
    • 1
  • Bernhard Vogel
    • 3
  • Heike Vogel
    • 3
  1. 1.Engineering Mathematics and Computing Lab (EMCL)Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.German Weather Service (DWD)OffenbachGermany
  3. 3.Institute for Meteorology and Climate Research (IMK)Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations