Advertisement

Simulation of Land Management Effects on Soil N2O Emissions using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale

  • Martin Wlotzka
  • Vincent Heuvelinea
  • Steffen Klatta
  • Edwin Haasb
  • David Krausb
  • Klaus Butterbach-Bahlb
  • Philipp Kraft
  • Lutz Breuerc
Living reference work entry

Agricultural soils are the primary anthropogenic source of atmospheric N2O. Greenhouse gas (GHG) emissions from soils are mainly the result of microbial processes such as nitrification/denitrification. These processes have a strong dependency on environmental factors like temperature, moisture, soil and vegetation properties, or the land management. Therefore, emissions occur with a high spatial and temporal variability giving rise to hot spots and hot moments. Quantifying sources and sinks of GHG like CO2, N2O, and CH4for natural, agricultural, and forest ecosystems is crucial for our understanding of impacts of land management on the biosphere-atmosphere exchange of GHG and for the development of mitigation options. GHG exchange from soils is driven by complex microbial and plant nutrient turnover processes, and it is the net result of all physicochemical and biological processes involved in production, consumption, and transport. Process-oriented biogeochemical models are useful...

Keywords

Porous Medium Hydrological Model Hydraulic Head Riparian Zone Biogeochemical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the German Research Foundation (DFG) under research grants HE 4760/4-1 and BU 1173/12-1.

References

  1. Aris R (1989) Vectors, tensors, and the basic equations of fluid mechanics. Dover, New YorkzbMATHGoogle Scholar
  2. Beheydt D, Boeckx P, Sleutel S, Li C, Van Cleemput O (2007) Validation of DNDC for 22 long-term N2O field emission measurements. Atmos Environ 41(29):6196–6211CrossRefGoogle Scholar
  3. Blagodatsky S, Richter O (1998) Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity state of microorganisms. Soil Biol Biochem 30(13):1743–1755. doi:10.1016/S0038-0717(98)00028-5, http://www.sciencedirect.com/science/article/pii/S0038071798000285
  4. Blagodatsky SA, Grote R, Kiese R, Werner C, Butterbach-Bahl K (2011) Modelling of microbial carbon and nitrogen turnover in soil with special emphasis on N-trace gases emission. Plant Soil 346:297–330CrossRefGoogle Scholar
  5. Bondeau A, Smith PC, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Mueller C, Reichstein M, Smith B (2007) Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob Change Biol 13(3):679–706CrossRefGoogle Scholar
  6. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Papers No 3, Colorado State UniversityGoogle Scholar
  7. Brutsaert W (2005) Hydrology. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  8. Buis S, Piacentini A, Declat D, the PALM Group (2006) Palm: a computational framework for assembling high performance computing applications. Concurr Comput Pract Exp 18:231–245CrossRefGoogle Scholar
  9. Butterbach-Bahl K, Kesik M, Miehle P, Papen H, Li C (2004a) Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant Soil 260(1/2):311–329CrossRefGoogle Scholar
  10. Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004b) Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Glob Biogeochem Cycles 18:GB3012CrossRefGoogle Scholar
  11. Chatskikh D, Olesen JE, Berntsen J, Regina K, Yamulki S (2005) Simulation of effects of soils, climate and management on N2O emission from grasslands. Biogeochemistry 76(3):395–419CrossRefGoogle Scholar
  12. Chirinda N, Kracher D, Lægdsmand M, Porter JR, Olesen JE, Petersen BM, Doltra J, Kiese R, Butterbach-Bahl K (2011) Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant Soil 343(1–2):251–260Google Scholar
  13. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86(C8):7203–7209CrossRefGoogle Scholar
  14. Cui J, Li C, Sun G, Trettin C (2005) Linkage of MIKE SHE to wetland-DNDC for carbon budgeting and anaerobic biogeochemistry simulation. Biogeochemistry 72(2):147–167CrossRefGoogle Scholar
  15. Dämmgen U, Grünhage L (2002) Trace gas emissions from German agriculture as obtained from the application of simpler or default methodologies. Environ Pollut 117(1):23–34CrossRefGoogle Scholar
  16. Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS (2005) Modeling soil CO2 emissions from ecosystems. Biogeochemistry 73(1):71–91CrossRefGoogle Scholar
  17. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ (2010) Estimating uncertainty in N2O emissions from US cropland soils. Glob Biogeochem Cycles 24:GB1009Google Scholar
  18. de Noblet-Ducoudre N, Gervois S, Ciais P, Viovy N, Brisson N, Seguin B, Perrier A (2004) Coupling the soil-vegetation-atmosphere-transfer scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. In: Agronomie, laboratory of sciences of the climate & environment, Gif Sur Yvette, pp 397–407Google Scholar
  19. Firestone M, Davidson E (1989) Exchange of trace gases between terrestrial ecosystems and the atmosphere, Wiley, 1989, pp.7–21Google Scholar
  20. Van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  21. Gervois S, Ciais P, de Noblet-Ducoudre N, Brisson N, Vuichard N, Viovy N (2008) Carbon and water balance of European croplands throughout the 20th century. Glob Biogeochem Cycles 22:GB2018CrossRefGoogle Scholar
  22. Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P (2009) Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93(1–2): 49–77CrossRefGoogle Scholar
  23. Haas E, Klatt S, Froehlich A, Kraft P, Werner C, Kiese R, Grote R, Breuer L, Butterbach-Bahl K (2012) LandscapeDNDC: a process model for simulation of biosphere-atmosphere-hydrosphere exchange processes at site and regional scale. Landsc Ecol. doi:10.1007/s10980-012-9772-xGoogle Scholar
  24. Heuser H (2002) Lehrbuch der analysis. Teubner, StuttgartzbMATHCrossRefGoogle Scholar
  25. Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, Woodward CS (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Transactions on Mathematical Software. Tech. rep., LLNL technical report UCRL-JP-200037Google Scholar
  26. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories: volume 4 agriculture, forestry and other land use. Tech. rep., Prepared by the National Greenhouse Gas Inventories Programme, HayamaGoogle Scholar
  27. IPCC (2007) Climate change 2007: the physical science basis – contribution of working group to the fourth assessment report of the intergovernmental panel on climate change. Tech. rep., Intergovernmental Panel on Climate Change, Cambridge/New YorkGoogle Scholar
  28. Kemanian AR, Julich S, Manoranjan VS, Arnold JR (2011) Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: theory and model testing. Ecol Model 222(12):1913–1921CrossRefGoogle Scholar
  29. Kiese R, Li C, Hilbert DW, Papen H, Butterbach-Bahl K (2005) Regional application of PNET-N-DNDC for estimating the N2O source strength of tropical rainforests in the wet tropics of australia. Glob Change Biol 11(1):128–144. doi:10.1111/j.1365-2486.2004.00873.xCrossRefGoogle Scholar
  30. Kraft P, Vaché KB, Frede HG, Breuer L (2011) A hydrological programming language extension for integrated catchment models. Environ Model Softw 26:828–830CrossRefGoogle Scholar
  31. Leffelaar PA, Wessel WW (1988) Denitrification in a homogeneous, closed system: experiment and simulation. Soil Sci 146(5):335–349CrossRefGoogle Scholar
  32. Li C, Frolking S, Frolking TA (1992) A model of nitrous-oxide evolution from soil driven by rainfall events. 1. Model structure and sensitivity. J Geophys Res 97(D9):9759–9776CrossRefGoogle Scholar
  33. Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Change 72(3):321–338CrossRefGoogle Scholar
  34. Luttich M, Dämmgen U, Haenel HD, Eurich-Menden B, Dohler H, Osterburg B (2007) Calculations of emissions from German agriculture – National Emission Inventory Report (NIR) 2007 for 2005. Tech. rep., Landbauforschung Völkenrode, Institut für Agrarrelevante Klimaforschung Johann Heinrich von Thünen Institut (vTI) Bundesforschungsinstitut für Ländliche Räume, Wald und FischereiGoogle Scholar
  35. Mander U, Uuemaa E, Kull A, Kanal A, Maddison M, Soosaar K, Salm JO, Lesta M, Hansen R, Kuller R, Harding A, Augustin J (2010) Assessment of methane and nitrous oxide fluxes in rural landscapes. Landsc Urban Plan 98:172–181CrossRefGoogle Scholar
  36. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  37. Narasimhan TN (2005) Buckingham, 1907: an appreciation. Vadose Zone J 4:434–441CrossRefGoogle Scholar
  38. Parton WJ, Ojima DS, Cole CV, Schimel DS (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management, quantitative modeling of soil forming processes. Tech. rep., Soil Science Society of AmericaGoogle Scholar
  39. Piacentini A, the PALM Group (2003) Palm: a dynamic parallel coupler. Lect Notes Comput Sci 2565:479–492CrossRefGoogle Scholar
  40. Pohlert T, Breuer L, Huisman JA, Frede HG (2007a) Assessing the model performance of an integrated hydrological and biogeochemical model for discharge and nitrate load predictions. Hydrol Earth Syst Sci 11(2):997–1011CrossRefGoogle Scholar
  41. Pohlert T, Huisman JA, Breuer L, Frede HG (2007b) Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—model development, sensitivity, and GLUE analysis. Ecol Model 203(3–4):215–228CrossRefGoogle Scholar
  42. Qu Y, Duffy CJ (2007) A semidiscrete finite volume formulation for multiprocess watershed simulation. Water Resour Res 43:W08419Google Scholar
  43. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333zbMATHCrossRefGoogle Scholar
  44. Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Boerner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Change Biol 16(5):1451–1469CrossRefGoogle Scholar
  45. Simmons C (2008) Henry Darcy (1803–1858): immortalised by his scientific legacy. Hydrogeol J 1023–1038. doi:10.1007/s10040-008-0304-3Google Scholar
  46. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B Biol Sci 363(1492):789–813CrossRefGoogle Scholar
  47. Smith J, Gottschalk P, Bellarby J, Chapman S, Lilly A, Towers W, Bell J, Coleman K, Nayak D, Richards M, Hillier J, Flynn H, Wattenbach M, Aitkenhead M, Yeluripati J, Farmer J, Milne R, Thomson A, Evans C, Whitmore A, Falloon P, Smith P (2010) Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Clim Res 45(1): 179–192Google Scholar
  48. Stange F, Butterbach-Bahl K, Papen H, Zechmeister-Boltenstern S, Li C, Aber J (2000) A process-oriented model of N2O and NO emissions from forest soils 2. Sensitivity analysis and validation. J Geophys Res Atmos 105:4385–4398CrossRefGoogle Scholar
  49. Van den Hoof C, Hanert E, Vidale PL (2011) Simulating dynamic crop growth with an adapted land surface model - JULES-SUCROS: model development and validation. Agric For Meteorol 151(2):137–153CrossRefGoogle Scholar
  50. Wassmann R, Papen H, Rennenberg H (1993) Methane emission from rice paddies and possible mitigation strategies. Chemosphere 26(1–4):201–217CrossRefGoogle Scholar
  51. Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O emissions from tropical rainforest soils using a detailed biogeochemical model. Glob Biogeochem Cycles 21(3). doi:10.1029/2006GB002909, http://dx.doi.org/10.1029/2006GB002909
  52. Zaehle S, Sitch S, Smith B, Hatterman F (2005) Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. Glob Biogeochem Cycles 19:GB3020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Wlotzka
    • 1
  • Vincent Heuvelinea
    • 1
  • Steffen Klatta
    • 1
  • Edwin Haasb
    • 2
  • David Krausb
    • 2
  • Klaus Butterbach-Bahlb
    • 2
  • Philipp Kraft
    • 3
  • Lutz Breuerc
    • 3
  1. 1.University of Heidelberg, Interdisciplinary Center for Scientific ComputingEngineering Mathematics and Computing LabHeidelbergGermany
  2. 2.Karlsruhe Institute of Technology (KIT)Institute of Meteorology and Climate ResearchGarmisch-PartenkirchenGermany
  3. 3.Institute of Landscape Ecology and Resources ManagementJustus-Liebig-University of GiessenGiessenGermany

Personalised recommendations