Geodetic World Height System Unification

Living reference work entry

Abstract

Elevations are one of the positional attributes embedded in all geospatial data. They are essential for a wide range of engineering and scientific activities. Some of the activities requiring precise elevations are activities of high societal impacts, such as sea level rise, storm surges and coastal inundation, floods and evacuation route planning, and crustal motion, subsidence, and other surface deformations due to seismic, mining, or other events. In order to successfully monitor and manage such events regionally (e.g., floods) or globally (e.g., sea level rise), the elevation information needs to not only be accurate but to also refer to the same zero-height reference surface (vertical datum). Accurate elevations can be obtained using spirit leveling, or by combining Global Navigation Satellite Systems (GNSS) positioning methods with a model of the geoid (the equipotential surface of the Earth’s gravity field approximating the idealized mean sea surface). So although the high accuracy requirements can in general be met, the need for a common reference surface often cannot. This is because there are currently over 100 different vertical datums around the world. Their unification is therefore a scientific problem of high practical significance.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Gravity Anomaly Tide Gauge Vertical Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial supports provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the European Space Agency (ESA) for the project STSE GOCE+: Height System Unification with GOCE are gratefully acknowledged.

References

  1. Amjadiparvar B, Sideris MG, Rangelova E (2013) North American height datums and their offsets: evaluation of the GOCE-based global geopotential models in Canada and USA. J Appl Geodesy 7(3):191–203CrossRefGoogle Scholar
  2. Amos MJ, Feathersone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasi-geoid computations. J Geodesy 83:57–68. doi:10.1007/s00190-008-0232-yCrossRefGoogle Scholar
  3. Argus DE, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723Google Scholar
  4. Bursa M et al (2008) Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Stud Geophys et Geod 42:459–466CrossRefGoogle Scholar
  5. Cartwright DE, Crease J (1963) A Comparison of the geodetic-reference levels of England and France by means of the sea surface. Proc R Soc Lond Ser A Math Phys Sci 273(1355):558–580CrossRefGoogle Scholar
  6. Colombo O (1980) A world vertical network. Report 296, Department of Geodetic Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  7. Featherstone WE, Filmer MS (2012) The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res 117:C08035. doi:10.1029/2012JC007974Google Scholar
  8. Fischer I (1977) Mean sea level and the marine geoid – an analysis of concepts. Mar Geodesy 1:37. doi:10.1080/01490417709387950CrossRefGoogle Scholar
  9. Gatti A, Reguzzoni M, Venuti G (2013) The height datum problem and the role of satellite gravity models. J Geodesy 87:15–22. doi:10.1007/s00190-012-0574-3CrossRefGoogle Scholar
  10. Gerlach C, Fecher F (2012) Approximations of the GOCE error variance-covariance matrix for least-squares estimation of height datum offsets. J Geod Sci 2(4):247–256Google Scholar
  11. Gerlach C, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geodesy 87:57–67CrossRefGoogle Scholar
  12. Heck B (2005) Problems in the definition of vertical reference frames. In: Proceedings of V Hotine Marussi Symposium on Mathematical Geodesy, Matera. International Association of Geodesy symposia, vol 127. Springer, pp 164–173Google Scholar
  13. Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Proceedings of Sea Surface Topography and the Geoid, Edinburgh. International Association of Geodesy symposia, vol 104. Springer, New York, pp 116–128Google Scholar
  14. Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy, 2nd edn. Springer, Wien/New YorkGoogle Scholar
  15. Jekeli C (2000) Heights, the geopotential and vertical datums. OSU report no. 459. Depart of Civil and Environmental Engineering and Geodetic Science, Ohio State University, ColumbusGoogle Scholar
  16. Moritz H (2013) Classical physical geodesy. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics. Springer, Berlin/HeidelbergGoogle Scholar
  17. Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843CrossRefGoogle Scholar
  18. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916Google Scholar
  19. Pugh DT (1987) Tides, surges, and mean sea level. Wiley, ChichesterGoogle Scholar
  20. Rangelova E, Sideris MG, Amjadiparvar P, Hayden T (2014) Height datum unification by means of the GBVP approach using tide gauges. In: Proceedings of the VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome. International Association of Geodesy Symposia, vol 142. Springer (in press)Google Scholar
  21. Rangelova E, van der Wal W, Sideris MG (2012) How significant is the dynamic component of the North American vertical datum? J Geod Sci 2(4):281–289. doi:10.2478/v10156-012-0005-7Google Scholar
  22. Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report 421, Department of Geodetic Science and Surveying, Ohio State University, ColumbusGoogle Scholar
  23. Rummel R, Gruber T, Sideris MG, Rangelova E, Woodworth P, Hughes C, Ihde J, Liebsch G, Rülke A, Schafer U (2014) STSE–GOCE+: height system unification with GOCE – summary and final results. ESA Study Contract Report No. GO-HSU-PR-0021. Available online at: http://www.goceplushsu.eu/gpweb/gc-cont.php?p=65
  24. Rummel R, Ilk KH (1995) Height datum connection – the ocean part. Allg Vermessungs 8–9:321–330Google Scholar
  25. Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498CrossRefGoogle Scholar
  26. Sanchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. In: Proceedings of Dynamic Planet, Cairns. International Association of Geodesy symposia, vol 130. Springer, pp 638–645Google Scholar
  27. Sanchez L (2008) Approach for the establishment of a global vertical reference level. In: Proceedings of VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan. International Association of Geodesy symposia, vol 132. Springer, pp 119–125Google Scholar
  28. Sansò F, Sideris MG (eds) (2013) Geoid determination – theory and methods. Lecture Notes in Earth-Sciences. Springer, Berlin/Heidelberg, 734ppGoogle Scholar
  29. Sansò F, Usai S (1995) Height datum and local geodetic datum in the theory of geodetic boundary value problems. Allg Vermussungsnachreichten, Wichmann, Heft 8–9:343–385Google Scholar
  30. Sansò F, Venuti G (2002) The height datum/geodetic datum problem. Geophys J Int 149:768–775Google Scholar
  31. Sideris MG, Fotopoulos G (eds) (2012) Special issue on regional and global geoid-based vertical datums. J Geod Sci 2(4):246–376Google Scholar
  32. Tenzer R, Vatrt V, Gan L, Abdalla A, Dayoub N (2011) Combined approach for the unification of leveling networks in New Zealand. J Geod Sci 1(4):324–332. doi:10.2478/v10156-011-0012-0Google Scholar
  33. Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318Google Scholar
  34. Xu P (1992) A quality investigation of global vertical datum connection. Geophys J Int 110:361–370. doi:10.1111/j.1365-246X.1992.tb00880.xCrossRefGoogle Scholar
  35. Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. New Series, vol 34. Netherlands Geod Commission, DelftGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations