Skip to main content

Geodetic World Height System Unification

  • Living reference work entry
  • First Online:

Abstract

Elevations are one of the positional attributes embedded in all geospatial data. They are essential for a wide range of engineering and scientific activities. Some of the activities requiring precise elevations are activities of high societal impacts, such as sea level rise, storm surges and coastal inundation, floods and evacuation route planning, and crustal motion, subsidence, and other surface deformations due to seismic, mining, or other events. In order to successfully monitor and manage such events regionally (e.g., floods) or globally (e.g., sea level rise), the elevation information needs to not only be accurate but to also refer to the same zero-height reference surface (vertical datum). Accurate elevations can be obtained using spirit leveling, or by combining Global Navigation Satellite Systems (GNSS) positioning methods with a model of the geoid (the equipotential surface of the Earth’s gravity field approximating the idealized mean sea surface). So although the high accuracy requirements can in general be met, the need for a common reference surface often cannot. This is because there are currently over 100 different vertical datums around the world. Their unification is therefore a scientific problem of high practical significance.

This is a preview of subscription content, log in via an institution.

References

  • Amjadiparvar B, Sideris MG, Rangelova E (2013) North American height datums and their offsets: evaluation of the GOCE-based global geopotential models in Canada and USA. J Appl Geodesy 7(3):191–203

    Article  Google Scholar 

  • Amos MJ, Feathersone WE (2009) Unification of New Zealand’s local vertical datums: iterative gravimetric quasi-geoid computations. J Geodesy 83:57–68. doi:10.1007/s00190-008-0232-y

    Article  Google Scholar 

  • Argus DE, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723

    Google Scholar 

  • Bursa M et al (2008) Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Stud Geophys et Geod 42:459–466

    Article  Google Scholar 

  • Cartwright DE, Crease J (1963) A Comparison of the geodetic-reference levels of England and France by means of the sea surface. Proc R Soc Lond Ser A Math Phys Sci 273(1355):558–580

    Article  Google Scholar 

  • Colombo O (1980) A world vertical network. Report 296, Department of Geodetic Science and Surveying, Ohio State University, Columbus

    Google Scholar 

  • Featherstone WE, Filmer MS (2012) The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res 117:C08035. doi:10.1029/2012JC007974

    Google Scholar 

  • Fischer I (1977) Mean sea level and the marine geoid – an analysis of concepts. Mar Geodesy 1:37. doi:10.1080/01490417709387950

    Article  Google Scholar 

  • Gatti A, Reguzzoni M, Venuti G (2013) The height datum problem and the role of satellite gravity models. J Geodesy 87:15–22. doi:10.1007/s00190-012-0574-3

    Article  Google Scholar 

  • Gerlach C, Fecher F (2012) Approximations of the GOCE error variance-covariance matrix for least-squares estimation of height datum offsets. J Geod Sci 2(4):247–256

    Google Scholar 

  • Gerlach C, Rummel R (2013) Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J Geodesy 87:57–67

    Article  Google Scholar 

  • Heck B (2005) Problems in the definition of vertical reference frames. In: Proceedings of V Hotine Marussi Symposium on Mathematical Geodesy, Matera. International Association of Geodesy symposia, vol 127. Springer, pp 164–173

    Google Scholar 

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Proceedings of Sea Surface Topography and the Geoid, Edinburgh. International Association of Geodesy symposia, vol 104. Springer, New York, pp 116–128

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2006) Physical geodesy, 2nd edn. Springer, Wien/New York

    Google Scholar 

  • Jekeli C (2000) Heights, the geopotential and vertical datums. OSU report no. 459. Depart of Civil and Environmental Engineering and Geodetic Science, Ohio State University, Columbus

    Google Scholar 

  • Moritz H (2013) Classical physical geodesy. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of Geomathematics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Pail R et al (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B04406. doi:10.1029/2011JB008916

    Google Scholar 

  • Pugh DT (1987) Tides, surges, and mean sea level. Wiley, Chichester

    Google Scholar 

  • Rangelova E, Sideris MG, Amjadiparvar P, Hayden T (2014) Height datum unification by means of the GBVP approach using tide gauges. In: Proceedings of the VIII Hotine-Marussi Symposium on Mathematical Geodesy, Rome. International Association of Geodesy Symposia, vol 142. Springer (in press)

    Google Scholar 

  • Rangelova E, van der Wal W, Sideris MG (2012) How significant is the dynamic component of the North American vertical datum? J Geod Sci 2(4):281–289. doi:10.2478/v10156-012-0005-7

    Google Scholar 

  • Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report 421, Department of Geodetic Science and Surveying, Ohio State University, Columbus

    Google Scholar 

  • Rummel R, Gruber T, Sideris MG, Rangelova E, Woodworth P, Hughes C, Ihde J, Liebsch G, Rülke A, Schafer U (2014) STSE–GOCE+: height system unification with GOCE – summary and final results. ESA Study Contract Report No. GO-HSU-PR-0021. Available online at: http://www.goceplushsu.eu/gpweb/gc-cont.php?p=65

  • Rummel R, Ilk KH (1995) Height datum connection – the ocean part. Allg Vermessungs 8–9:321–330

    Google Scholar 

  • Rummel R, Teunissen P (1988) Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull Géod 62:477–498

    Article  Google Scholar 

  • Sanchez L (2007) Definition and realization of the SIRGAS vertical reference system within a globally unified height system. In: Proceedings of Dynamic Planet, Cairns. International Association of Geodesy symposia, vol 130. Springer, pp 638–645

    Google Scholar 

  • Sanchez L (2008) Approach for the establishment of a global vertical reference level. In: Proceedings of VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy, Wuhan. International Association of Geodesy symposia, vol 132. Springer, pp 119–125

    Google Scholar 

  • Sansò F, Sideris MG (eds) (2013) Geoid determination – theory and methods. Lecture Notes in Earth-Sciences. Springer, Berlin/Heidelberg, 734pp

    Google Scholar 

  • Sansò F, Usai S (1995) Height datum and local geodetic datum in the theory of geodetic boundary value problems. Allg Vermussungsnachreichten, Wichmann, Heft 8–9:343–385

    Google Scholar 

  • Sansò F, Venuti G (2002) The height datum/geodetic datum problem. Geophys J Int 149:768–775

    Google Scholar 

  • Sideris MG, Fotopoulos G (eds) (2012) Special issue on regional and global geoid-based vertical datums. J Geod Sci 2(4):246–376

    Google Scholar 

  • Tenzer R, Vatrt V, Gan L, Abdalla A, Dayoub N (2011) Combined approach for the unification of leveling networks in New Zealand. J Geod Sci 1(4):324–332. doi:10.2478/v10156-011-0012-0

    Google Scholar 

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318

    Google Scholar 

  • Xu P (1992) A quality investigation of global vertical datum connection. Geophys J Int 110:361–370. doi:10.1111/j.1365-246X.1992.tb00880.x

    Article  Google Scholar 

  • Xu P, Rummel R (1991) A quality investigation of global vertical datum connection. New Series, vol 34. Netherlands Geod Commission, Delft

    Google Scholar 

Download references

Acknowledgements

The financial supports provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada and by the European Space Agency (ESA) for the project STSE GOCE+: Height System Unification with GOCE are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sideris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sideris, M. (2014). Geodetic World Height System Unification. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_83-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics