Skip to main content

Convection Structures of Binary Fluid Mixtures in Porous Media

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Handbook of Geomathematics

Abstract

The study of convection patterns of binary mixtures in a porous medium plays an important role for modeling geothermal reservoirs as well as for many more industrial applications. Making use of a global Galerkin method allows to numerically determine in an efficient way various convection structures. The aim of this chapter is to describe the structural properties of these flow patterns, their bifurcation behavior, and stability against infinitesimal perturbations. The Soret effect, i.e., the generation of concentration gradients by temperature gradients, is taken into account and leads to several patterns with distinct features. We focus on those patterns that are of primary importance near the onset of convection; these include roll, crossroll, and square convection as well as traveling waves of convection rolls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augustin M, Umla R, Huke B, Lücke M (2010) Stationary and oscillatory convection of binary fluids in a porous medium. Phys Rev E 82:056303

    Article  Google Scholar 

  • Barten W, Lücke M, Hort W, Kamps M (1989) Fully developed travelling-wave convection in binary fluid mixtures. Phys Rev Lett 63:376–379

    Article  Google Scholar 

  • Barten W, Lücke M, Kamps M, Schmitz R (1995) Convection in binary fluid mixtures. I. Extended traveling-wave and stationary states. Phys Rev E 51:5636–5661

    Article  Google Scholar 

  • Brand H, Steinberg V (1983) Nonlinear effects in the convective instability of a binary mixture in a porous medium near threshold. Phys Lett A 93:333–336

    Article  Google Scholar 

  • Charrier-Mojtabi M-C, Elhajjar B, Mojtabi A (2007) Analytical and numerical stability analysis of Soret-driven convection in a horizontal porous layer. Phys Fluids 19:124104

    Article  Google Scholar 

  • De La Torre Juárez M, Busse FH (1995) Stability of two-dimensional convection in a fluid-saturated porous medium. J Fluid Mech 292:305–323

    Article  MathSciNet  MATH  Google Scholar 

  • Elhajjar B, Charrier-Mojtabi M-C, Mojtabi A (2008) Separation of a binary fluid mixture in a porous horizontal cavity. Phys Rev E 77:026310

    Article  Google Scholar 

  • Hollinger S, Lücke M (1998) Influence of the Soret effect on convection of binary fluids. Phys Rev E 57:4238–4249

    Article  Google Scholar 

  • Hollinger S, Büchel P, Lücke M (1997) Bistability of slow and fast traveling waves in fluid mixtures. Phys Rev Lett 78:235–238

    Article  Google Scholar 

  • Horton C, Rogers F (1945) Convection currents in a porous medium. J Appl Phys 16:367–370

    Article  MathSciNet  MATH  Google Scholar 

  • Howle LE, Behringer RP, Georgiadis JG (1997) Convection and flow in porous media. Part 2. Visualization by shadowgraph. J Fluid Mech 332:247–262

    Google Scholar 

  • Huke B, Lücke M, Büchel P, Jung C (2000) Stability boundaries of roll and square convection in binary fluid mixtures with positive separation ratio. J Fluid Mech 408:121–147

    Article  MathSciNet  MATH  Google Scholar 

  • Huke B, Pleiner H, Lücke M (2007) Convection patterns in colloidal solutions. Phys Rev E 75:036203

    Article  Google Scholar 

  • Jung D (2005) Ausgedehnte und lokalisierte Konvektion in zweikomponentigen Flüssigkeiten: Wellen, Fronten und Pulse. PhD thesis, Universität des Saarlandes

    Google Scholar 

  • Knobloch E (1986) Oscillatory convection in binary mixtures. Phys Rev A 34:1538–1549

    Article  Google Scholar 

  • Lapwood E (1948) Convection of a fluid in a porous medium. Proc Camb Philos Soc 44:508–521

    Article  MathSciNet  MATH  Google Scholar 

  • Linz SJ, Lücke M, Müller H, Niederländer J (1988) Convection in binary fluid mixtures: traveling waves and lateral currents. Phys Rev A 38:5727–5741

    Article  Google Scholar 

  • Lücke M, Barten W, Kamps M (1992) Convection in binary mixtures: the role of the concentration field. Phys Rev E 61:183–196

    MATH  Google Scholar 

  • Müller HW, Lücke M (1988) Competition between roll and square convection patterns in binary mixtures. Phys Rev A 38:2965–2974

    Article  Google Scholar 

  • Nield DA, Bejan A (eds) (2006) Convection in porous media. Springer, New York

    MATH  Google Scholar 

  • O’Sullivan MJ, Pruess K, Lippmann MJ (2001) State of the art of geothermal reservoir simulation. Geothermics 30:395–429

    Article  Google Scholar 

  • Platten JK (2006) The Soret–effect: a review of recent experimental results. J Appl Mech 73:5–15

    Article  MATH  Google Scholar 

  • Pruess K (1990) Modeling of geothermal reservoirs: fundamental processes, computer simulation and field applications. Geothermics 19:3–15

    Article  Google Scholar 

  • Saravanan S, Kandaswamy P (2003) Convection currents in a porous layer with a gravity gradient. Heat Mass Trans 39:693–699

    Article  Google Scholar 

  • Shattuck MD, Behringer RP, Johnson GA, Georgiadis JG (1997) Convection and flow in porous media. Part 1. Visualization by magnetic resonance imaging. J Fluid Mech 332:215–245

    Google Scholar 

  • Sovran O, Charrier-Mojtabi M-C, Mojtabi A (2001) Naissance de la convection thermo-solutale en couche poreuse infinie avec effet Soret: onset on Soret-driven convection in an infinite porous layer. C R Acad Sci Ser IIb Mec 329:287–293

    MATH  Google Scholar 

  • Straus JM (1974) Large amplitude convection in porous media. J Fluid Mech 64:51–63

    Article  MATH  Google Scholar 

  • Thomas O (2007) Reservoir analysis based on compositional gradients. PhD thesis, Stanford University

    Google Scholar 

  • Umla R, Augustin M, Huke B, Lücke M (2010) Roll convection of binary fluid mixtures in porous media. J Fluid Mech 649:165–186

    Article  MATH  Google Scholar 

  • Umla R, Augustin M, Huke B, Lücke M (2011) Three-dimensional convection of binary mixtures in porous media. Phys Rev E 84:056326

    Article  Google Scholar 

  • Vadasz P, Olek S (1999) Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp Porous Media 37:69–91

    Article  MathSciNet  Google Scholar 

  • Vadasz P, Olek S (2000) Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp Porous Media 41:211–239

    Article  Google Scholar 

  • Vafai K (ed) (2005) Handbook of porous media. Springer, New York

    Google Scholar 

  • Veronis G (1966) Large-amplitude Bénard convection. J Fluid Mech 26:49–68

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Augustin, M., Umla, R., Lücke, M. (2014). Convection Structures of Binary Fluid Mixtures in Porous Media. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_75-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_75-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Convection Structures of Binary Fluid Mixtures in Porous Media
    Published:
    06 January 2015

    DOI: https://doi.org/10.1007/978-3-642-27793-1_75-2

  2. Original

    Convection Structures of Binary Fluid Mixtures in Porous Media
    Published:
    04 September 2014

    DOI: https://doi.org/10.1007/978-3-642-27793-1_75-1