Mathematical Foundations of Photogrammetry

  • Konrad Schindler
Living reference work entry

Latest version View entry history


Photogrammetry uses photographic cameras to obtain information about the 3D world. The basic principle of photogrammetric measurement is straightforward: recording a light ray in a photographic image corresponds to observing a direction from the camera to the 3D scene point where the light was reflected or emitted. From this relation, procedures have been derived to orient cameras relative to each other or relative to a 3D object coordinate frame and to reconstruct unknown 3D objects through triangulation. The chapter provides a compact, gentle introduction to the fundamental geometric relations that underly image-based 3D measurement.


Image Point Fundamental Matrix Object Point Projection Center Ground Control Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdel-Aziz YI, Karara HM (1971) Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. In: Proceedings of the symposium on close-range photogrammetry. American Society of Photogrammetry, Falls ChurchGoogle Scholar
  2. Brown DC (1958) A solution to the general problem of multiple station analytical stereotriangulation. Tech. Rep. RCA-MTP data reduction technical report no 43, Patrick Airforce BaseGoogle Scholar
  3. Das GB (1949) A mathematical approach to problems in photogrammetry. Emp Surv Rev 10(73):131–137CrossRefGoogle Scholar
  4. Förstner W (2010) Minimal representations for uncertainty and estimation in projective spaces. In: Proceedings of the Asian conference on computer vision, Queenstown. Lecture notes in computer science, vol 6493. SpringerGoogle Scholar
  5. Grunert JA (1841) Das Pothenot’sche Problem in erweiterter Gestalt; nebst Bemerkungen über seine Anwendung in der Geodäsie. Grunert Archiv der Mathematik und Physik 1Google Scholar
  6. Haralick RM, Lee CN, Ottenberg K, Nölle M (1994) Review and analysis of solutions of the three point perspective pose estimation problem. Int J Comput Vis 13(3):331–356CrossRefGoogle Scholar
  7. Hartley RI (1994) Projective reconstruction and invariants from multiple images. IEEE Trans Pattern Anal Mach Intell 16(10):1036–1041CrossRefGoogle Scholar
  8. Hartley RI (1997) Lines and points in three views and the trifocal tensor. Int J Comput Vis 22(2):125–140CrossRefGoogle Scholar
  9. Hartley RI, Sturm P (1997) Triangulation. Comput Vis Image Underst 68(2):146–157CrossRefGoogle Scholar
  10. Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2nd edn. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  11. Huber PJ (1981) Robust statistics. Wiley, New YorkCrossRefzbMATHGoogle Scholar
  12. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168MathSciNetzbMATHGoogle Scholar
  13. Longuet-Higgins HC (1981) A computer algorithm for reconstructing a scene from two projections. Nature 293:133–135CrossRefGoogle Scholar
  14. Luhmann T, Robson S, Kyle S, Harley I (2006) Close range photogrammetry. Principles, methods and applications. Whittles PublishingGoogle Scholar
  15. McGlone JC (ed) (2013) Manual of Photogrammetry, 6th edn. American Society for Photogrammetry and Remote Sensing, BethesdaGoogle Scholar
  16. Nistér D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–777CrossRefGoogle Scholar
  17. Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  18. Pajdla T (2002) Stereo with oblique cameras. Int J Comput Vis 47(1–3):161–170CrossRefzbMATHGoogle Scholar
  19. Semple JG, Kneebone GT (1952) Algebraic projective geometry. ClarendonGoogle Scholar
  20. Triggs B, McLauchlan PF, Hartley RI, Fitzgibbon AW (1999) Bundle adjustment – a modern synthesis. In: Vision algorithms: theory and practice. Lecture notes in computer science, vol 1883. SpringerGoogle Scholar
  21. von Sanden H (1908) Die Bestimmung der Kernpunkte in der Photogrammetrie. PhD thesis, Universität GöttingenGoogle Scholar
  22. Wunderlich W (1982) Rechnerische Rekonstruktion eines ebenen Objektes aus zwei Photographien. Mitteilungen des Geodätisches Instituts der TU Graz 40:265–377Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Photogrammetry and Remote Sensing, ETH ZürichZürichSwitzerland

Personalised recommendations