Skip to main content

Multiscale Approximation

  • Living reference work entry
  • First Online:
Handbook of Geomathematics
  • 397 Accesses

Abstract

In this chapter, we briefly recall the concept of multiscale approximations of functions by means of wavelet expansions. We present a short overview on the basic construction principles and discuss the most important properties of wavelets such as characterizations of function spaces. Moreover, we explain how wavelets can be used in signal/image analysis, particularly for compression and denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams R (1975) Sobolev spaces. Academic, New York

    MATH  Google Scholar 

  • Antoine J-P, Vandergheynst P (1998) Wavelets on the n-sphere and other manifolds. J Math Phys 39:3987–4008

    Article  MATH  MathSciNet  Google Scholar 

  • Antoine J-P, Dahlke S, Holschneider M (eds) (2007) Special issue: analysis on the sphere I, II. J Fourier Anal Appl 13:4, 6

    Google Scholar 

  • Canuto C, Tabacco A, Urban K (1999) The wavelet element method, part I: construction and analysis. Appl Comput Harm Anal 6:1–52

    Article  MATH  MathSciNet  Google Scholar 

  • Canuto C, Tabacco A, Urban K (2000) The wavelet element method, part II: realization and additional features in 2D and 3D. Appl Comput Harm Anal 8:123–165

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle A, DeVore R, Lee N-Y, Lucier B (1998) Nonlinear wavelet image processing: variational problems, compression, and noise removement through wavelet shrinkage. IEEE Trans Image Process 7:319–335

    Article  MATH  MathSciNet  Google Scholar 

  • Chui CK (1992) An introduction to wavelets. Academic, Boston

    MATH  Google Scholar 

  • Cohen A (2003) Numerical analysis of wavelet methods. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Cohen A, Daubechies I (1993) Non-separable bidimensional wavelet bases. Rev Math Iberoam 9:51–137

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A, Masson R (2000) Wavelet adaptive methods for second order elliptic problems, boundary conditions and domains decompositions. Numer Math 86:193–238

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A, Daubechies I, Feauveau J-C (1992) Bio-rthogonal bases of compactly supported wave-lets. Commun Pure Appl Math 45:485–560

    Article  MATH  MathSciNet  Google Scholar 

  • Cohen A, Dahmen W, DeVore R (2001) Adaptive wavelet methods for elliptic operator equations-convergence rates. Math Comput 70:22–75

    MathSciNet  Google Scholar 

  • Cristensen O (2003) An introduction to frames and Riesz bases. Birkhäuser, Boston

    Book  Google Scholar 

  • Dahlke S, Kunoth A (1994) Biorthogonal wavelets and multigrid. In: Hackbusch W, Wittum G (eds) Proceedings of the 9th GAMM-seminar “adaptive methods: algorithms, theory and applications”, NNFW series, vol 46, Vieweg, pp 99–119

    Google Scholar 

  • Dahlke S, Fornasier M, Raasch T (2007) Adaptive frame methods for elliptic operator equations. Adv Comput Math 27:27–63

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W (1996) Stability of multiscale transformations. J Fourier Anal Appl 2:341–361

    MATH  MathSciNet  Google Scholar 

  • Dahmen W (1997) Wavelet and multiscale methods for operator equations. Acta Numer 6:55–228

    Article  MathSciNet  Google Scholar 

  • Dahmen W, Schneider R (1998) Wavelets with complementary boundary conditions-function spaces on the cube. Result Math 34:255–293

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W, Schneider R (1999a) Composite wavelet bases. Math Comput 68:1533–1567

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W, Schneider R (1999b) Wavelets on manifolds I. Construction and domain decomposition. SIAM J Math Anal 31:184–230

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W, Prössdorf S, Schneider R (1993) Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solutions. Adv Comput Math 1:259–335

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen W, Kunoth A, Urban K (1999) Biorthogonal spline-wavelets on the interval-stability and moment conditions. Appl Comput Harm Anal 6:132–196

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies I (1987) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  MathSciNet  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF regional conference series in applied math, vol 61. SIAM, Philadelphia

    Google Scholar 

  • Dijkema TJ, Stevenson R, Schwab C (2009) An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr Approx 30(3). doi:10.1007/s00365-009-9064-0

    Google Scholar 

  • Donoho D, Johnstone I (1994) Ideal spacial adaptiation by wavelet shrinkage. Biometrika 81:425–455

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho D, Johnstone I (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90:1200–1224

    Article  MATH  MathSciNet  Google Scholar 

  • Frazier M, Jawerth B (1990) A discrete transform and decompositions of distribution spaces. J Funct Anal 93:34–170

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W, Schreiner M (1997) Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere. Constr Approx 14:493–515

    Article  MathSciNet  Google Scholar 

  • Gabor D (1946) Theory of communication. J Inst Elect Eng 93:429–457

    Google Scholar 

  • Haar A (1910) Zur Theorie der orthogonalen Funktionensysteme. Math Ann 69:331–331

    Article  MATH  MathSciNet  Google Scholar 

  • Jia R-Q, Micchelli CA (1991) Using the refinement equations for the construction of pre- wavelets II: powers of two. In: Laurent P-J, LeMehaute A, Schumaker LL (eds) Curves and surfaces. Academic, New York, pp 209–246

    Chapter  Google Scholar 

  • Kahane J-P, Lemarié-Rieusset P-G (1995) Fourier series and wavelets. Breach Science Publishers, Luxembourg

    Google Scholar 

  • Mallat S (1989) Multiresolution approximation and wavelet orthonormal bases of \(L_{2}(\mathbb{R})\). Trans Am Math Soc 315:69–87

    MATH  MathSciNet  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic, New York

    MATH  Google Scholar 

  • Meyer Y (1992) Wavelets and operators. Cambridge studies in advanced mathematics, vol 37. Cambridge University Press, Cambridge

    Google Scholar 

  • Potts D, Steidl G, Tasche M (1996) Kernels of spherical harmonics and spherical frames. In: Fontanella F, Jetter K, Laurent P-J (eds) Advanced topics in multivariate approximation. World Scientific, Singapore, pp 287–301

    Google Scholar 

  • Rosca D (2005) Locally supported rational spline wavelets on the sphere. Math Comput 74:1803–1829

    Article  MATH  MathSciNet  Google Scholar 

  • Schneider R (1998) Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung grosser vollbesetzter Gleichungssysteme. Advances in Numerical Mathematics, Teubner

    Book  MATH  Google Scholar 

  • Stevenson R (2003) Adaptive solution of operator equations using wavelet frames. SIAM J Numer Anal 41:1074–1100

    Article  MATH  MathSciNet  Google Scholar 

  • Sweldens W, Schröder P (1995) Spherical wavelets: efficiently representing functions on the sphere. In: Computer graphics proceedings (SIGGRAPH 1995). ACM, Los Angeles, CA, USA, pp 161–172

    Google Scholar 

  • Triebel H (2004) A note on wavelet bases in function spaces. Proc Orlicz centenary conf function spaces 7, Banach Center Publ 64:193–206

    Article  MathSciNet  Google Scholar 

  • Wickerhauser MV (1996) Adaptive wavelet analysis. Vieweg, Wiesbaden

    Book  MATH  Google Scholar 

  • Wojtaszczyk P (1997) A mathematical introduction to wavelets. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Dahlke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Dahlke, S. (2013). Multiscale Approximation. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_41-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_41-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics