Advertisement

Numerical Integration on the Sphere

  • Kerstin Hesse
  • Ian H. Sloan
  • Robert S. Womersley
Living reference work entry

Latest version View entry history

Abstract

This chapter is concerned with numerical integration over the unit sphere \(\mathbb{S}^{2} \subset \mathbb{R}^{3}\). We first discuss basic facts about numerical integration rules with positive weights. Then some important types of rules are discussed in detail: rules with a specified polynomial degree of precision, including the important case of longitude-latitude rules; rules using scattered data points; rules based on equal-area partitions; and rules for numerical integration over subsets of the sphere. Finally we show that for numerical integration over the whole sphere and for functions with an appropriate degree of smoothness, an optimal rate of convergence can be achieved by positive-weight rules with polynomial precision and also by rules obtained by integrating a suitable radial basis function interpolant.

Keywords

Delaunay Triangulation Voronoi Cell Voronoi Tessellation Spherical Triangle Spherical Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The support of the Australian Research Council is gratefully acknowledged. IHS and RSW acknowledge the support of the Hong Kong Polytechnic University, where much of this work was carried out. The authors also thank Ronald Cools for helpful advice.

References

  1. Ahrens C, Beylkin G (2009) Rotationally invariant quadratures for the sphere. Proc R Soc A 465:3103–3125CrossRefzbMATHMathSciNetGoogle Scholar
  2. Alfeld P, Neamtu M, Schumaker LL (1996) Bernstein-Bézier polynomials on spheres and sphere-like surfaces. Comput Aided Geom Des 13:333–349CrossRefzbMATHMathSciNetGoogle Scholar
  3. Atkinson K (1982) Numerical integration on the sphere. J Austral Math Soc (Ser B) 23:332–347CrossRefzbMATHGoogle Scholar
  4. Atkinson K (1998) An introduction to numerical analysis. Wiley, New YorkGoogle Scholar
  5. Atkinson K, Sommariva A (2005) Quadrature over the sphere. Electron Trans Numer Anal 20:104–118zbMATHMathSciNetGoogle Scholar
  6. Bajnok B (1991) Construction of designs on the 2-sphere. Eur J Comb 12:377–382CrossRefzbMATHMathSciNetGoogle Scholar
  7. Bannai E, Bannai E (2009) A survey on spherical designs and algebraic combinatorics on spheres. Eur J Comb 30(6):1392–1425CrossRefzbMATHMathSciNetGoogle Scholar
  8. Bannai E, Damerell RM (1979) Tight spherical designs I. Math Soc Jpn 31(1):199–207CrossRefzbMATHMathSciNetGoogle Scholar
  9. Baumgardner JR, Frederickson PO (1985) Icosahedral discretization of the two-sphere. SIAM J Numer Anal 22(6):1107–1115CrossRefzbMATHMathSciNetGoogle Scholar
  10. Boal N, Sayas F-J (2004) Adaptive numerical integration on spherical triangles. Monografas del Seminario Matemático García de Galdeano 31:61–69MathSciNetGoogle Scholar
  11. Chen D, Menegatto VA, Sun X (2003) A necessary and sufficient condition for strictly positive definite functions on spheres. Proc Am Math Soc 131:2733–2740CrossRefzbMATHMathSciNetGoogle Scholar
  12. Chen X, Frommer A, Lang B (2009) Computational existence proofs for spherical t-designs. Department of Applied Mathematics, The Hong Kong Polytechnic UniversityGoogle Scholar
  13. Chen X, Womersley RS (2006) Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J Numer Anal 44(6):2326–2341CrossRefzbMATHMathSciNetGoogle Scholar
  14. Cohn H, Kumar A (2007) Universally optimal distribution of points on spheres. J Am Math Soc 20(1):99–148CrossRefzbMATHMathSciNetGoogle Scholar
  15. Cools R (1997) Constructing cubature formulae: the science behind the art. Acta Numer 1997:1–54CrossRefMathSciNetGoogle Scholar
  16. Cools R, Rabinowitz P (1993) Monomial cubature rules since “Stroud”: a compilation. J Comput Appl Math 48:309–326CrossRefzbMATHMathSciNetGoogle Scholar
  17. Cui J, Freeden W (1997) Equidistribution on the sphere. SIAM J Sci Comput 18(2):595–609CrossRefzbMATHMathSciNetGoogle Scholar
  18. Davis PJ, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic, OrlandozbMATHGoogle Scholar
  19. Delsarte P, Goethals JM, Seidel JJ (1997) Spherical codes and designs. Geom Dedicata 6:363–388CrossRefMathSciNetGoogle Scholar
  20. Ditkin VA, Lyusternik LA (1953) On a method of practical harmonic analysis on the sphere (in Russian). Vychisl Mat Vychisl Tekhn 1:3–13MathSciNetGoogle Scholar
  21. Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676CrossRefzbMATHMathSciNetGoogle Scholar
  22. Erdélyi A (ed), Magnus W, Oberhettinger F, Tricomi FG (research associates) (1953) Higher transcendental functions, vol 2, Bateman Manuscript Project, California Institute of Technology. McGraw-Hill, New York/Toronto/LondonGoogle Scholar
  23. Fasshauer G (2007) Meshfree approximation methods with Matlab. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  24. Fasshauer GE, Schumaker LL (1998) Scattered data fitting on the sphere. In: Dahlen M, Lyche T, Schumaker LL (eds) Mathematical methods for curves and surfaces II. Vanderbilt University, Nashville, pp 117–166Google Scholar
  25. Filbir F, Themistoclakis W (2008) Polynomial approximation on the sphere using scattered data. Math Nachr 281(5):650–668CrossRefzbMATHMathSciNetGoogle Scholar
  26. Floater MS, Iske A (1996a) Multistep scattered data interpolation using compactly supported radial basis functions. J Comput Appl Math 73:65–78CrossRefzbMATHMathSciNetGoogle Scholar
  27. Floater MS, Iske A (1996b) Thinning and approximation of large sets of scattered data. In: Fontanella F, Jetter K, Laurent P-J (eds) Advanced topics in multivariate approximation. World Scientific, Singapore, pp 87–96Google Scholar
  28. Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, LeipzigzbMATHGoogle Scholar
  29. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford Science/Clarendon, OxfordzbMATHGoogle Scholar
  30. Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston/Basel/BerlinCrossRefzbMATHGoogle Scholar
  31. Freeden W, Reuter R (1982) Remainder terms in numerical integration formulas of the sphere. In: Schempp W, Zeller K (eds) Multivariate approximation theory II. Birkhäuser, Basel, pp 151–170CrossRefGoogle Scholar
  32. Gautschi W (2004) Orthogonal polynomials: computation and approximation. Oxford University, New YorkGoogle Scholar
  33. Górski KM, Hivon E, Banday AJ, Wandelt BD, Hansen FK, Reinecke M, Bartelmann M (2005) HEALPix: a framework for high-resoluton discretization and fast analysis of data distributed on the sphere. Astrophys J 622:759–771CrossRefGoogle Scholar
  34. Gräf M, Kunis S, Potts D (2009) On the computation of nonnegative quadrature weights on the sphere. Appl Comput Harmon Anal 27(1):124–132CrossRefzbMATHMathSciNetGoogle Scholar
  35. Hannay JH, Nye JF (2004) Fibonacci numerical integration on a sphere. J Phys A Math Gen 37:11591–11601CrossRefzbMATHMathSciNetGoogle Scholar
  36. Hardin RH, Sloane NJA (1996) McLaren’s improved snub cube and other new spherical designs in three dimensions. Discret Comput Geom 15:429–441CrossRefzbMATHMathSciNetGoogle Scholar
  37. Hesse K, Sloan IH (2005a) Optimal lower bounds for cubature error on the sphere \(\mathbb{S}^{2}\). J Complex 21:790–803CrossRefzbMATHMathSciNetGoogle Scholar
  38. Hesse K, Sloan IH (2005b) Optimal order integration on the sphere. In: Li T, Zhang P (eds) Frontiers and prospects of contemporary applied mathematics. Series in contemporary applied mathematics, vol 6. Higher Education, Beijing/World Scientific, Singapore, pp 59–70Google Scholar
  39. Hesse K, Sloan IH (2006) Cubature over the sphere \(\mathbb{S}^{2}\) in Sobolev spaces of arbitrary order. J Approx Theory 141:118–133CrossRefzbMATHMathSciNetGoogle Scholar
  40. Hesse K, Womersley RS (2009) Numerical integration with polynomial exactness over a spherical cap. Technical report SMRR-2009-09, Department of Mathematics, University of SussexGoogle Scholar
  41. Jetter K, Stöckler J, Ward JD (1998) Norming sets and spherical quadrature formulas. In: Chen Li, Micchelli C, Xu Y (eds) Computational mathematics. Marcel Decker, New York, pp 237–245Google Scholar
  42. Korevaar J, Meyers, JLH (1993) Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere. Integral Transform Spec Funct 1(2):105–117CrossRefzbMATHMathSciNetGoogle Scholar
  43. Lebedev VI (1975) Values of the nodes and weights of ninth to seventeenth order Gauss-Markov quadrature formulae invariant under the octahedron group with inversion. Comput Math Math Phys 15:44–51CrossRefGoogle Scholar
  44. Lebedev VI, Laikov DN (1999) A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl Math 59(3):477–481Google Scholar
  45. Le Gia QT, Mhaskar HN (2008) Localized linear polynomial operators and quadrature on the sphere. SIAM J Numer Anal 47(1):440–466CrossRefMathSciNetGoogle Scholar
  46. Le Gia QT, Narcowich FJ, Ward JD, Wendland H (2006) Continuous and discrete least-squares approximation by radial basis functions on spheres. J Approx Theory 143:124–133CrossRefzbMATHMathSciNetGoogle Scholar
  47. Le Gia QT, Sloan IH, Wendland H (2009) Multiscale analysis in Sobolev spaces on the sphere. Applied mathematics report AMR09/20, University of New South WalesGoogle Scholar
  48. McLaren AD (1963) Optimal numerical integration on a sphere. Math Comput 17(84):361–383CrossRefzbMATHMathSciNetGoogle Scholar
  49. Mhaskar HN (2004a) Local quadrature formulas on the sphere. J Complex 20:753–772CrossRefzbMATHMathSciNetGoogle Scholar
  50. Mhaskar HN (2004b) Local quadrature formulas on the sphere, II. In: Neamtu M, Saff EB (eds) Advances in constructive approximation. Nashboro, Nashville, pp 333–344Google Scholar
  51. Mhaskar HN, Narcowich FJ, Ward JD (2001) Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math Comput 70:1113–1130 (Corrigendum (2002) Math Comput 71:453–454)Google Scholar
  52. Müller C (1966) Spherical harmonics. Lecture notes in mathematics, vol 17. Springer-Verlag, New YorkGoogle Scholar
  53. Narcowich FJ, Petrushev P, Ward JD (2006) Localized tight frames on spheres. SIAM J Math Anal 38(2):574–594CrossRefMathSciNetGoogle Scholar
  54. Narcowich FJ, Ward JD (2002) Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J Math Anal 33(6):1393–1410CrossRefzbMATHMathSciNetGoogle Scholar
  55. Popov AS (2008) Cubature formulas on a sphere invariant under the icosahedral rotation group. Numer Anal Appl 1(4):355–361CrossRefGoogle Scholar
  56. Ragozin DL (1971) Constructive polynomial approximation on spheres and projective spaces. Trans Am Math Soc 162:157–170MathSciNetGoogle Scholar
  57. Rakhmanov EA, Saff EB, Zhou YM (1994) Minimal discrete energy on the sphere. Math Res Lett 11(6):647–662CrossRefMathSciNetGoogle Scholar
  58. Reimer M (1992) On the existence problem for Gauss-quadarature on the sphere. In: Fuglede F (ed) Approximation by solutions of partial differential equations. Kluwer, Dordrecht, pp 169–184CrossRefGoogle Scholar
  59. Reimer M (1994) Quadrature rules for the surface integral of the unit sphere based on extremal fundamental systems. Math Nachr 169:235–241CrossRefzbMATHMathSciNetGoogle Scholar
  60. Reimer M (2003) Multivariate polynomial approximation. Birkhäuser, Basel/Boston/BerlinCrossRefzbMATHGoogle Scholar
  61. Renka RJ (1997) Algorithm 772: STRIPACK: delaunay triangulation and Voronoi diagram on the surface of a sphere. ACM Trans Math Softw 23(3):416–434CrossRefzbMATHMathSciNetGoogle Scholar
  62. Saff EB, Kuijlaars ABJ (1997) Distributing many points on a sphere. Math Intell 19:5–11CrossRefzbMATHMathSciNetGoogle Scholar
  63. Sansone G (1959) Orthogonal functions. Interscience, London/New YorkzbMATHGoogle Scholar
  64. Seymour PD, Zaslavsky T (1984) Averaging sets: a generalization of mean values and spherical designs. Adv Math 52:213–240CrossRefzbMATHMathSciNetGoogle Scholar
  65. Sidi A (2005) Application of class \(\mathcal{I}_{m}\) variable transformations to numerical integration over surfaces of spheres. J Comput Appl Math 184(2):475–492CrossRefzbMATHMathSciNetGoogle Scholar
  66. Sloan IH (1995) Polynomial interpolation and hyperinterpolation over general regions. J Approx Theory 83:238–254CrossRefzbMATHMathSciNetGoogle Scholar
  67. Sloan IH, Womersley RS (2004) Extremal systems of points and numerical integration on the sphere. Adv Comput Math 21:107–125CrossRefzbMATHMathSciNetGoogle Scholar
  68. Sloan IH, Womersley RS (2009) A variational characterization of spherical designs. J Approx Theory 159:308–318CrossRefzbMATHMathSciNetGoogle Scholar
  69. Sloane NJA (2000) Spherical designs. http://www.research.att.com/~njas/sphdesigns/index.html
  70. Sobolev SL (1962) Cubature formulas on the sphere invariant with respect to any finite group of rotations. Dokl Acad Nauk SSSR 146:310–313Google Scholar
  71. Sobolev SL, Vaskevich VL (1997) The theory of cubature formulas. Kluwer, Dordrecht/Boston/LondonCrossRefzbMATHGoogle Scholar
  72. Sommariva A, Womersley RS (2005) Integration by RBF over the sphere. Applied mathematics report AMR05/17, University of New South WalesGoogle Scholar
  73. Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall, Inc., Englewood CliffszbMATHGoogle Scholar
  74. Szegö G (1975) Orthogonal polynomials. American mathematical society colloquium publications, vol 23, 4th edn. American Mathematical Society, ProvidenceGoogle Scholar
  75. Tegmark M (1996) An icosahedron-based method for pixelizing the celestial sphere. Astrophys J 470:L81–L84CrossRefGoogle Scholar
  76. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial basis functions of minimal degree. Adv Comput Math 4:389–396CrossRefzbMATHMathSciNetGoogle Scholar
  77. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93:258–272CrossRefzbMATHMathSciNetGoogle Scholar
  78. Wendland H (2005) Scattered data approximation. Cambridge University, CambridgezbMATHGoogle Scholar
  79. Womersley RS (2007) Interpolation and cubature on the sphere. http://web.maths.unsw.edu.au/~rsw/Sphere/
  80. Womersley RS (2009) Spherical designs with close to the minimal number of points. Applied mathematics report AMR09/26, The University of New South WalesGoogle Scholar
  81. Womersley RS, Sloan IH (2001) How good can polynomial interpolation on the sphere be? Adv Comput Math 14:195–226CrossRefzbMATHMathSciNetGoogle Scholar
  82. Xu Y, Cheney EW (1992) Strictly positive definite functions on spheres. Proc Am Math Soc 116:977–981CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kerstin Hesse
    • 1
  • Ian H. Sloan
    • 2
  • Robert S. Womersley
    • 2
  1. 1.Department of Mathematics University of PaderbornPaderbornGermany
  2. 2.School of Mathematics and Statistics University of New South WalesSydneyAustralia

Personalised recommendations