Skip to main content

Tomography: Problems and Multiscale Solutions

  • 292 Accesses

Abstract

In this chapter, a brief survey of three different approaches for the approximation of functions on the 3d-ball is presented: the expansion in an orthonormal (polynomial) basis, a reproducing kernel-based spline interpolation/approximation, and a wavelet-based multiscale analysis. In addition, some geomathematical tomography problems are discussed as applications.

Keywords

  • Orthogonal Polynomial
  • Spherical Harmonic
  • Scaling Function
  • Jacobi Polynomial
  • Product Series

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aki K, Richards PG (2002) Quantitative seismology, 2nd edn. University Science Books, Sausalito

    Google Scholar 

  • Akram M, Amina I, Michel V (2011) A study of differential operators for particular complete orthonormal systems on a 3d ball. IJPAM-Int J Pure Appl Math 73:489–506

    MathSciNet  MATH  Google Scholar 

  • Amirbekyan A (2007) The application of reproducing kernel based spline approximation to seismic surface and body wave tomography: theoretical aspects and numerical results. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. http://kluedo.ub.uni-kl.de/volltexte/2007/2103/index.html

  • Amirbekyan A, Michel V (2008) Splines on the three-dimensional ball and their application to seismic body wave tomography. Inverse Probl 24:015022 (25pp)

    Google Scholar 

  • Amirbekyan A, Michel V, Simons FJ (2008) Parameterizing surface-wave tomographic models with harmonic spherical splines. Geophys J Int 174:617–628

    CrossRef  Google Scholar 

  • Ballani L, Engels J, Grafarend EW (1993) Global base functions for the mass density in the interior of a massive body (Earth). Manuscr Geod 18:99–114

    Google Scholar 

  • Berkel P (2009) Multiscale methods for the combined inversion of normal mode and gravity variations. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Berkel P, Michel V (2010) On mathematical aspects of a combined inversion of gravity and normal mode variations by a spline method. Math Geosci 42:795–816

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, Princeton

    Google Scholar 

  • Davis P (1963) Interpolation and approximation. Blaisdell Publishing Company, Waltham

    MATH  Google Scholar 

  • Dufour HM (1977) Fonctions orthogonales dans la sphère – résolution théorique du problème du potentiel terrestre. Bull Geod 51:227–237

    CrossRef  Google Scholar 

  • Dunkl CF, Xu Y (2001) Orthogonal polynomials of several variables. In: Doran R, Ismail M, Lam T-Y, Lutwak E (eds.) Encyclopedia of mathematics and its applications, vol 81. Cambridge University Press, Cambridge

    Google Scholar 

  • Engl H (1982) On least-squares collocation for solving linear integral equations of the first kind with noisy right-hand side. Boll Geod Sci Aff 41:291–313

    Google Scholar 

  • Engl H (1983a) On the convergence of regularization methods for ill-posed linear operator equations. In: Hämmerlin G, Hoffmann KH (eds.) Improperly posed problems and their numerical treatment, ISNM 63. Birkhäuser, Basel, pp 81–95

    CrossRef  Google Scholar 

  • Engl H (1983b) Regularization by least-squares collocation. In: Deuflhard P, Hairer E (eds.) Numerical treatment of inverse problems in differential and integral equations. Birkhäuser, Boston, pp 345–354

    CrossRef  Google Scholar 

  • Fengler M, Michel D, Michel V (2006) Harmonic spline-wavelets on the 3-dimensional ball and their application to the reconstruction of the earth’s density distribution from gravitational data at arbitrarily shaped satellite orbits. ZAMM-Z Angew Math Me 86:856–873

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Fischer D (2011) Sparse regularization of a joint inversion of gravitational data and normal mode anomalies. PhD thesis, Geomathematics Group, Department of Mathematics, University of Siegen, Verlag Dr. Hut, Munich

    Google Scholar 

  • Fischer D, Michel V (2012) Sparse regularization of inverse gravimetry – case study: spatial and temporal mass variations in South America. Inverse Probl 28:065012 (34pp)

    Google Scholar 

  • Fischer D, Michel V (2013a) Inverting GRACE gravity data for local climate effects. J Geod Sci 3:151–162

    Google Scholar 

  • Fischer D, Michel V (2013b) Automatic best-basis selection for geophysical tomographic inverse problems. Geophys J Int 193:1291–1299

    CrossRef  Google Scholar 

  • Fokas AS, Hauk O, Michel V (2012) Electro-magneto-encephalography for the three-shell model: numerical implementation via splines for distributed current in spherical geometry. Inverse Probl 28:035009 (28pp)

    Google Scholar 

  • Freeden W (1981a) On approximation by harmonic splines. Manuscr Geod 6:193–244

    MATH  Google Scholar 

  • Freeden W (1981b) On spherical spline interpolation and approximation. Math Methods Appl Sci 3:551–575

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Freeden W (1999) Multiscale modelling of spaceborne geodata. Teubner, Leipzig

    MATH  Google Scholar 

  • Freeden W, Michel V (2004) Multiscale potential theory with applications to geoscience. Birkhäuser, Boston

    CrossRef  MATH  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences – a scalar, vectorial, and tensorial setup. Springer, Heidelberg

    MATH  Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere – with applications to geomathematics. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Freud G (1971) Orthogonal polynomials. Pergamon, Budapest

    Google Scholar 

  • Irving JCE, Deuss A, Woodhouse JH (2009) Normal mode coupling due to hemispherical anisotropic structure in earth’s inner core. Geophys J Int 178:962–975

    CrossRef  Google Scholar 

  • Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity and density of earth’s mantle. Science 285:1231–1236

    CrossRef  Google Scholar 

  • Li X-D, Giardini D, Woodhouse JH (1991) Large-scale even-degree structure of the earth from splitting of long-period normal modes. J Geophys Res 96:551–577

    CrossRef  Google Scholar 

  • Michel V (1999) A multiscale method for the gravimetry problem – theoretical and numerical aspects of harmonic and anharmonic modelling. PhD thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker, Aachen

    Google Scholar 

  • Michel V (2002a) Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics. Appl Comput Harmon Anal 12:77–99

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Michel V (2002b) A multiscale approximation for operator equations in separable Hilbert spaces – case study: reconstruction and description of the earth’s interior. Habilitation thesis, Shaker Verlag, Aachen

    Google Scholar 

  • Michel V (2005a) Wavelets on the 3-dimensional ball. Proc Appl Math Mech 5:775–776

    CrossRef  Google Scholar 

  • Michel V (2005b) Regularized wavelet-based multiresolution recovery of the harmonic mass density distribution from data of the earth’s gravitational field at satellite height. Inverse Probl 21:997–1025

    CrossRef  MATH  Google Scholar 

  • Michel V (2013) Lectures on constructive approximation – Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. Birkhäuser, Boston

    MATH  Google Scholar 

  • Michel V, Fokas AS (2008) A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl 24:045019 (25pp)

    Google Scholar 

  • Michel V, Wolf K (2008) Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys J Int 173:1–16

    CrossRef  Google Scholar 

  • Müller C (1966) Spherical harmonics. Springer, Berlin

    MATH  Google Scholar 

  • Nashed MZ, Wahba G (1974) Convergence rates of approximate least squares solutions of linear integral and operator equations of the first kind. Math Comput 28:69–80

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Nashed MZ, Wahba G (1975) Some exponentially decreasing error bounds for a numerical inversion of the Laplace transform. J Math Anal Appl 52:660–668

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Nikiforov AF, Uvarov VB (1988) Special functions of mathematical physics – a unified introduction with applications. Translated from the Russian by RP Boas. Birkhäuser, Basel

    Google Scholar 

  • Nolet G (2008) A breviary of seismic tomography. Cambridge University Press, Cambridge

    CrossRef  MATH  Google Scholar 

  • Schröder P, Sweldens W (1995) Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of the 22nd annual conference on computer graphics and interactive techniques. Los Angeles, ACM, New York, pp 161–172

    Google Scholar 

  • Szegö G (1939) Orthogonal polynomials. AMS Colloquium Publications, XXIII, Providence

    Google Scholar 

  • Tscherning CC (1996) Isotropic reproducing kernels for the inner of a sphere or spherical shell and their use as density covariance functions. Math Geol 28:161–168

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Woodhouse JH, Dahlen FA (1978) The effect of a general aspherical perturbation of the free oscillations of the earth. Geophys J R Astron Soc 53:335–354

    CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Michel, V. (2013). Tomography: Problems and Multiscale Solutions. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_32-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_32-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering