Skip to main content

Asymptotic Models for Atmospheric Flows

Handbook of Geomathematics
  • 366 Accesses

Abstract

Atmospheric flows feature length and time scales from 10− 5 to 105 m and from microseconds to weeks and more. For scales above several kilometers and minutes, there is a natural scale separation induced by the atmosphere’s thermal stratification together with the influences of gravity and Earth’s rotation and the fact that atmospheric flow Mach numbers are typically small. A central aim of theoretical meteorology is to understand the associated scale-specific flow phenomena, such as internal gravity waves, baroclinic instabilities, Rossby waves, cloud formation and moist convection, (anti-)cyclonic weather patterns, hurricanes, and a variety of interacting waves in the tropics. Such understanding is greatly supported by analyses of reduced sets of model equations which capture just those fluid mechanical processes that are essential for the phenomenon in question while discarding higher-order effects. Such reduced models are typically proposed on the basis of combinations of physical arguments and mathematical derivations, and are not easily understood by the meteorologically untrained. This chapter demonstrates how many well-known reduced sets of model equations for specific, scale-dependent atmospheric flow phenomena may be derived in a unified and transparent fashion from the full compressible atmospheric flow equations using standard techniques of formal asymptotics. It also discusses an example for the limitations of this approach. Sections 35 of this chapter are a recompilation of the author’s more comprehensive article “Scale-dependent models for atmospheric flows”, Annual Reviews of Fluid Mechanics, 42 (2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Babin A, Mahalov A, Nicolaenko B (2002) Fast singular limits of stably stratified 3D Euler and Navier-Stokes equations and ageostrophic wave fronts. In: Norbury J, Roulstone I (eds) Large-scale atmosphere-ocean dynamics 1: analytical methods and numerical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Bannon PR (1996) On the anelastic approximation for a compressible atmosphere. J Atmos Sci 53:3618–3628

    Article  Google Scholar 

  • Bresch D, Desjardins B (2003) Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun Math Phys 238:211–223

    MATH  MathSciNet  Google Scholar 

  • Bresch D, Gérard-Varet D (2007) On some homogenization problems from shallow water theory. Appl Math Lett 20:505–510

    Article  MATH  MathSciNet  Google Scholar 

  • Browning G, Kreiss HO, Schubert WH (2000) The role of gravity waves in slowly varying in time tropospheric motions near the equator. J Atmos Sci 57:4008–4019

    Article  MathSciNet  Google Scholar 

  • Bühler O (2010) Wave-mean interactions in fluids and superfluids. Ann Rev Fluid Mech 42:205–228

    Article  Google Scholar 

  • Burkhardt U, Becker E (2006) A consistent diffusion-dissipation parameterization in the ECHAM climate model. Mon Weather Rev 134:1194–1204

    Article  Google Scholar 

  • Cao C, Titi E (2003) Global well-posedness and finite dimensional global attractor for a 3-D planetary geostrophic viscous model. Commun Pure Appl Math 56:198–233

    Article  MATH  MathSciNet  Google Scholar 

  • Cao C, Titi E (2007) Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann Math 166:245–267

    Article  MATH  MathSciNet  Google Scholar 

  • Clark P et al (2009) The weather research & forecasting model. http://www.wrf-model.org/

  • Davies T, Staniforth A, Wood N, Thuburn J (2003) Validity of anelastic and other equation sets as inferred from normal-mode analysis. Q J R Meteorol Soc 129:2761–2775

    Article  Google Scholar 

  • Durran DR (1989) Improving the anelastic approximation. J Atmos Sci 46:1453–1461

    Article  Google Scholar 

  • Dutrifoy A, Schochet S, Majda AJ (2009) A simple justification of the singular limit for equatorial shallow-water dynamics. Commun Pure Appl Math LXI:322–333

    Article  MathSciNet  Google Scholar 

  • Embid P, Majda AJ (1998) Averaging over fast gravity waves for geophysical flows with unbalanced initial data. Theor Comput Fluid Dyn 11:155–169

    Article  MATH  Google Scholar 

  • Engquist B, Weinan E, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Commun Comput Phys 2:367–450

    MATH  MathSciNet  Google Scholar 

  • Feireisl E, Málek J, Novtoný A, Stravskraba I (2008) Anelastic approximation as a singular limit of the compressible Navier-Stokes system. Commun Part Differ Equ 33:157–176

    Article  MATH  Google Scholar 

  • Frierson DMW (2008) Midlatitude static stability in simple and comprehensive general circulation models. J Atmos Sci 65:1049–1062

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. International geophysics series, vol 30. Academic, San Diego

    Google Scholar 

  • Grabowski WW (2001) Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J Atmos Sci 58:978–997

    Article  Google Scholar 

  • Grabowski WW (2004) An improved framework for superparameterization. J Atmos Sci 61:1940–1952

    Article  Google Scholar 

  • Held IM, Hoskins BJ (1985) Large-scale eddies and the general circulation of the troposphere. Adv Geophys 28:3–31

    Article  Google Scholar 

  • Houghton J (ed) (2002) The physics of atmospheres. Cambridge University Press, Cambridge

    Google Scholar 

  • Hunt JCR, Vassilicos JC (1991) Kolmogoroffs contributions to the physical and geometrical understanding of small-scale turbulence and recent developments. Proc R Soc Lond A 434:183–210

    Article  MATH  Google Scholar 

  • Keller J, Ting L (1951) Approximate equations for large scale atmospheric motions. Internal Report, Inst. for Mathematics & Mechanics (renamed to Courant Institute of Mathematical Sciences in 1962), NYU, (http://www.arxiv.org/abs/physics/0606114v2)

  • Kevorkian J, Cole J (1996) Multiple scale and singular perturbation methods. Springer, New York

    Book  MATH  Google Scholar 

  • Klein R (2004) An applied mathematical view of theoretical meteorology. In: Applied mathematics entering the 21st century: invited talks from the ICIAM 2003 congress. SIAM proceedings in applied mathematics, vol 116

    Google Scholar 

  • Klein R (2006) Theoretical developments in tropical meteorology. Special issue, Theoretical and computational fluid dynamics, vol 20. Springer, Berlin

    Google Scholar 

  • Klein R (2008) An unified approach to meteorological modelling based on multiple-scales asymptotics. Adv Geosci 15:23–33

    Article  Google Scholar 

  • Klein R (2009) Asymptotics, structure, and integration of sound-proof atmospheric flow equations. Theor Comput Fluid Dyn 23:161–195

    Article  MATH  Google Scholar 

  • Klein R (2010) Scale-dependent asymptotic models for atmospheric flows. Ann Rev Fluid Mech 42:249–274

    Article  Google Scholar 

  • Klein R, Majda AJ (2006) Systematic multiscale models for deep convection on mesoscales. Theor Comput Fluid Dyn 20:525–551

    Article  MathSciNet  Google Scholar 

  • Koppert HJ et al (2009) Consortium for small-scale modelling. http://www.cosmo-model.org/

  • Levermore CD, Oliver M, Titi ES (1996) Global well-posedness for models of shallow water in a basin with a varying bottom. Indiana Univ Math J 45:479–510

    Article  MATH  MathSciNet  Google Scholar 

  • Lorenz EN (1967) The nature and theory of the general circulation of the atmosphere. World Meteorological Organization, Geneva

    Google Scholar 

  • Lovejoy S, Tuck AF, Hovde SJ, Schertzer D (2008) Do stable atmospheric layers exist? Geophys Res Lett 35:L01802

    Google Scholar 

  • Lundgren TS (1982) Strained spiral vortex model for turbulent fine structure. Phys Fluids 25:2193–2203

    Article  MATH  Google Scholar 

  • Lynch P (2006) The emergence of numerical weather prediction: Richardson’s dream. Cambridge University Press, Cambridge

    Google Scholar 

  • Majda AJ (2002) Introduction to P.D.E.’s and waves for the atmosphere and ocean. Courant lecture notes, vol 9. American Mathematical Society & Courant Institute of Mathematical Sciences

    Google Scholar 

  • Majda AJ (2007a) Multiscale models with moisture and systematic strategies for superparameterization. J Atmos Sci 64:2726–2734

    Article  Google Scholar 

  • Majda AJ (2007b) New multiscale models and self-similarity in tropical convection. J Atmos Sci 64:1393–1404

    Article  Google Scholar 

  • Majda AJ, Biello JA (2003) The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J Atmos Sci 60:1809–1821

    Article  MathSciNet  Google Scholar 

  • Majda AJ, Klein R (2003) Systematic multi-scale models for the tropics. J Atmos Sci 60:393–408

    Article  Google Scholar 

  • Masmoudi N (2007) Rigorous derivation of the anelastic approximation. J Math Pures et Appliquées 3:230–240

    Article  MathSciNet  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Met Soc Jpn 44:25–43

    Google Scholar 

  • Muraki DJ, Snyder C, Rotunno R (1999) The next-order corrections to quasi-geostrophic theory. J Atmos Sci 56:1547–1560

    Article  MathSciNet  Google Scholar 

  • Nadiga BT, Hecht MW, Margolin LG, Smolarkiewicz PK (1997) On simulating flows with multiple time scales using a method of averages. Theor Comput Fluid Dyn 9:281–292

    Article  MATH  Google Scholar 

  • Névir P (2004) Ertel’s vorticity theorems, the particle relabelling symmetry and the energy-vorticity theory of fluid mechanics. Meteorologische Zeitschrift 13:485–498

    Article  Google Scholar 

  • Norbury J, Roulstone I (eds) (2002) Large scale atmosphere-ocean dynamics I: analytical methods and numerical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Oberlack M (2006) Symmetries, invariance and self-similarity in turbulence. Springer, Berlin

    Google Scholar 

  • Ogura Y, Phillips NA (1962) Scale analysis of deep moist convection and some related numerical calculations. J Atmos Sci 19:173–179

    Article  Google Scholar 

  • Oliver M (2006) Variational asymptotics for rotating shallow water near geostrophy: a transformational approach J Fluid Mech 551:197–234

    Article  MATH  MathSciNet  Google Scholar 

  • Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Peters N (2000) Turbulent combustion. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Rahmstorf S et al (2004) Cosmic rays, carbon dioxide and climate. EOS 85:38–41

    Article  Google Scholar 

  • Salmon R (1983) Practical use of Hamilton’s principle. J Fluid Mech 132:431–444

    Article  MATH  Google Scholar 

  • Salmon R (1998) Lectures on geophysical fluid dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Schneider T (2006) The general circulation of the atmosphere. Ann Rev Earth Planet Sci 34: 655–688

    Article  Google Scholar 

  • Schochet S (2005) The mathematical theory of low Mach number flows. M2AN 39:441–458

    Google Scholar 

  • Shaw TA, Shepherd TG (2009) A theoretical framework for energy and momentum consistency in subgrid-scale parameterization for climate models. J Atmos Sci 66:3095–3114

    Article  Google Scholar 

  • Shepherd T (1990) Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv Geophys 32:287–338

    Article  Google Scholar 

  • Sobel A, Nilsson J, Polvani L (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665

    Article  Google Scholar 

  • Tessier Y, Lovejoy S, Schertzer D (1993) Universal multi-fractals: theory and observations for rain and clouds. J Appl Meteorol 32:223–250

    Article  Google Scholar 

  • Wang B, Xie X (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part I: stable waves. J Atmos Sci 53:449–467

    MathSciNet  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • White AA (2002) A view of the equations of meteorological dynamics and various approximations. In: Norbury J, Roulstone I (eds) Large-scale atmosphere-ocean dynamics 1: analytical methods and numerical models. Cambridge University Press, Cambridge

    Google Scholar 

  • Zeitlin V (ed) (2007) Nonlinear dynamics of rotating shallow water: methods and advances. Elsevier, Amsterdam

    Google Scholar 

  • Zeytounian RK (1990) Asymptotic modeling of atmospheric flows. Springer, Heidelberg

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Ulrich Achatz, Dargan Frierson, Juan Pedro Mellado, Norbert Peters, Heiko Schmidt, and Bjorn Stevens for very helpful discussions and suggestions concerning the content and structure of this manuscript, and Ulrike Eickers for her careful proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Klein, R. (2013). Asymptotic Models for Atmospheric Flows. In: Freeden, W., Nashed, M., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27793-1_20-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27793-1_20-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27793-1

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Asymptotic Models for Atmospheric Flows
    Published:
    06 January 2015

    DOI: https://doi.org/10.1007/978-3-642-27793-1_20-3

  2. Original

    Asymptotic Models for Atmospheric Flows
    Published:
    20 September 2014

    DOI: https://doi.org/10.1007/978-3-642-27793-1_20-2