Gravitational Viscoelastodynamics

Living reference work entry

Abstract

We consider a compositionally and entropically stratified, compressible, rotating fluid earth and study gravitational-viscoelastic perturbations of its hydrostatic initial state. Using the Lagrangian representation and assuming infinitesimal perturbations, we deduce the incremental field equations and interface conditions of gravitational viscoelastodynamics (GVED) governing the perturbations. In particular, we distinguish the material, material-local, and local forms of the incremental equations. We also demonstrate that their short-time asymptotes correspond to generalizations of the incremental field equations and interface conditions of gravitational elastodynamics (GED), whereas the long-time asymptotes agree with the incremental field equations and interface conditions of gravitational viscodynamics (GVD). The incremental thermodynamic pressure appearing in the long-time asymptote to the incremental constitutive equation is shown to satisfy the appropriate incremental state equation. Finally, we derive approximate field theories applying to gravitational-viscoelastic perturbations of isocompositional, isentropic, and compressible or incompressible fluid domains.

Keywords

Interface Condition Incremental Stress Initial Field Hydrostatic Equilibrium Lagrangian Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amelung F, Wolf D (1994) Viscoelastic perturbations of the earth: significance of the incremental gravitational force in models of glacial isostasy. Geophys J Int 117:864–879CrossRefGoogle Scholar
  2. Backus GE (1967) Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys J R Astron Soc 13:71–101CrossRefMATHGoogle Scholar
  3. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  4. Biot MA (1959) The influence of gravity on the folding of a layered viscoelastic medium under compression. J Franklin Inst 267:211–228CrossRefMathSciNetGoogle Scholar
  5. Biot MA (1965) Mechanics of incremental deformations. Wiley, New YorkGoogle Scholar
  6. Bullen KE (1975) The Earth’s density. Chapman and Hall, LondonCrossRefGoogle Scholar
  7. Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton University Press, PrincetonGoogle Scholar
  8. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, OxfordMATHGoogle Scholar
  9. Christensen RM (1982) Theory of viscoelasticity, 2nd edn. Academic, New YorkGoogle Scholar
  10. Corrieu V, Thoraval C, Ricard Y (1995) Mantle dynamics and geoid green functions. Geophys J Int 120:516–532CrossRefGoogle Scholar
  11. D’Agostino G, Spada G, Sabadini R (1997) Postglacial rebound and lateral viscosity variations: a semi-analytical approach based on a spherical model with Maxwell rheology. Geophys J Int 129:F9–F13CrossRefGoogle Scholar
  12. Dahlen FA (1972) Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field. Geophys J R Astron Soc 28:357–383CrossRefMATHGoogle Scholar
  13. Dahlen FA (1973) Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field II: energy release. Geophys J R Astron Soc 31:469–484CrossRefMATHGoogle Scholar
  14. Dahlen FA (1974) On the static deformation of an earth model with a fluid core. Geophys J R Astron Soc 36:461–485CrossRefGoogle Scholar
  15. Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, PrincetonGoogle Scholar
  16. Darwin GH (1879) On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus. Philos Trans R Soc Lond Part 1 170:1–35CrossRefGoogle Scholar
  17. Dehant V, Wahr JM (1991) The response of a compressible, non-homogeneous earth to internal loading: theory. J Geomagn Geoelectr 43:157–178CrossRefGoogle Scholar
  18. Eringen AC (1989) Mechanics of continua, 2nd edn. R. E. Krieger, MalabarGoogle Scholar
  19. Golden JM, Graham GAC (1988) Boundary value problems in linear viscoelasticity. Springer, BerlinCrossRefMATHGoogle Scholar
  20. Grafarend EW (1982) Six lectures on geodesy and global geodynamics. Mitt Geodät Inst Tech Univ Graz 41:531–685MathSciNetGoogle Scholar
  21. Hanyk L, Yuen DA, Matyska C (1996) Initial-value and modal approaches for transient viscoelastic responses with complex viscosity profiles. Geophys J Int 127:348–362CrossRefGoogle Scholar
  22. Hanyk L, Matyska C, Yuen DA (1999) Secular gravitational instability of a compressible viscoelastic sphere. Geophys Res Lett 26:557–560CrossRefGoogle Scholar
  23. Haskell NA (1935) The motion of a viscous fluid under a surface load. Physics 6:265–269CrossRefMATHGoogle Scholar
  24. Haskell NA (1936) The motion of a viscous fluid under a surface load, 2. Physics 7:56–61CrossRefMATHGoogle Scholar
  25. Jarvis GT, McKenzie DP (1980) Convection in a compressible fluid with infinite Prandtl number. J Fluid Mech 96:515–583CrossRefMATHMathSciNetGoogle Scholar
  26. Johnston P, Lambeck K, Wolf D (1997) Material versus isobaric internal boundaries in the earth and their influence on postglacial rebound. Geophys J Int 129:252–268CrossRefGoogle Scholar
  27. Kaufmann G, Wolf D (1999) Effects of lateral viscosity variations on postglacial rebound: an analytical approach. Geophys J Int 137:489–500CrossRefGoogle Scholar
  28. Krauss W (1973) Methods and results of theoretical oceanography, vol. 1: dynamics of the homogeneous and the quasihomogeneous ocean. Bornträger, BerlinGoogle Scholar
  29. LePage WR (1980) Complex variables and the Laplace transform for engineers. Dover, New YorkMATHGoogle Scholar
  30. Li G, Yuen DA (1987) Viscous relaxation of a compressible spherical shell. Geophys Res Lett 14:1227–1230CrossRefGoogle Scholar
  31. Love AEH (1911) Some problems of geodynamics. Cambridge University Press, CambridgeMATHGoogle Scholar
  32. Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood CliffsGoogle Scholar
  33. Martinec Z (1999) Spectral, initial value approach for viscoelastic relaxation of a spherical earth with three-dimensional viscosity-I. Theory. Geophys J Int 137:469–488CrossRefGoogle Scholar
  34. Martinec Z (2000) Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth. Geophys J Int 142:117–141CrossRefGoogle Scholar
  35. Martinec Z, Wolf D (1998) Explicit form of the propagator matrix for a multi-layered, incompressible viscoelastic sphere. Scientific technical report GFZ Potsdam, STR98/08, p 13Google Scholar
  36. Martinec Z, Wolf D (1999) Gravitational-viscoelastic relaxation of eccentrically nested spheres. Geophys J Int 138:45–66CrossRefGoogle Scholar
  37. Martinec Z, Thoma M, Wolf D (2001) Material versus local incompressibility and its influence on glacial-isostatic adjustment. Geophys J Int 144:136–156CrossRefGoogle Scholar
  38. Mitrovica JX, Davis JL, Shapiro II (1994) A spectral formalism for computing three-dimensional deformation due to surface loads 1. Theory. J Geophys Res 99:7057–7073CrossRefGoogle Scholar
  39. O’Connell RJ (1971) Pleistocene glaciation and the viscosity of the lower mantle. Geophys J R Astron Soc 23:299–327CrossRefGoogle Scholar
  40. Panasyuk SV, Hager BH, Forte AM (1996) Understanding the effects of mantle compressibility on geoid kernels. Geophys J Int 124:121–133CrossRefGoogle Scholar
  41. Parsons BE (1972) Changes in the Earth’s shape. Ph.D. thesis, Cambridge University, CambridgeGoogle Scholar
  42. Peltier WR (1974) The impulse response of a Maxwell earth. Rev Geophys Space Phys 12: 649–669CrossRefGoogle Scholar
  43. Peltier WR (ed) (1989) Mantle convection, plate tectonics and geodynamics. Gordon and Breach, New YorkGoogle Scholar
  44. Ramsey AS (1981) Newtonian attraction. Cambridge University Press, CambridgeMATHGoogle Scholar
  45. Rayleigh L (1906) On the dilatational stability of the earth. Proc R Soc Lond Ser A 77:486–499CrossRefMATHGoogle Scholar
  46. Rümpker G, Wolf D (1996) Viscoelastic relaxation of a Burgers half space: implications for the interpretation of the Fennoscandian uplift. Geophys J Int 124:541–555CrossRefGoogle Scholar
  47. Sabadini R, Yuen DA, Boschi E (1982) Polar wandering and the forced responses of a rotating, multilayered, viscoelastic planet. J Geophys Res 87:2885–2903CrossRefGoogle Scholar
  48. Spada G, Sabadini R, Yuen DA, Ricard Y (1992) Effects on post-glacial rebound from the hard rheology in the transition zone. Geophys J Int 109:683–700CrossRefGoogle Scholar
  49. Tromp J, Mitrovica JX (1999a) Surface loading of a viscoelastic earth-I. General theory. Geophys J Int 137:847–855CrossRefGoogle Scholar
  50. Tromp J, Mitrovica JX (1999b) Surface loading of a viscoelastic earth-II. Spherical models. Geophys J Int 137:856–872CrossRefGoogle Scholar
  51. Tromp J, Mitrovica JX (2000) Surface loading of a viscoelastic planet-III. Aspherical models. Geophys J Int 140:425–441CrossRefGoogle Scholar
  52. Vermeersen LLA, Mitrovica JX (2000) Gravitational stability of spherical self-gravitating relaxation models. Geophys J Int 142:351–360CrossRefGoogle Scholar
  53. Vermeersen LLA, Sabadini R (1997) A new class of stratified viscoelastic models by analytical techniques. Geophys J Int 129:531–570CrossRefGoogle Scholar
  54. Vermeersen LLA, Vlaar NJ (1991) The gravito-elastodynamics of a pre-stressed elastic earth. Geophys J Int 104:555–563CrossRefGoogle Scholar
  55. Vermeersen LLA, Sabadini R, Spada G (1996) Compressible rotational deformation. Geophys J Int 126:735–761CrossRefGoogle Scholar
  56. Wieczerkowski K (1999) Gravito-Viskoelastodynamik für verallgemeinerte Rheologien mit Anwendungen auf den Jupitermond Io und die Erde. Publ Deutsch Geod Komm Ser C 515:130Google Scholar
  57. Williamson ED, Adams LH (1923) Density distribution in the earth. J Wash Acad Sci 13:413–428Google Scholar
  58. Wolf D (1984) The relaxation of spherical and flat Maxwell earth models and effects due to the presence of the lithosphere. J Geophys 56:24–33Google Scholar
  59. Wolf D (1985a) Thick-plate flexure re-examined. Geophys J R Astron Soc 80:265–273CrossRefGoogle Scholar
  60. Wolf D (1985b) On Boussinesq’s problem for Maxwell continua subject to an external gravity field. Geophys J R Astron Soc 80:275–279CrossRefGoogle Scholar
  61. Wolf D (1985c) The normal modes of a uniform, compressible Maxwell half-space. J Geophys 56:100–105Google Scholar
  62. Wolf D (1985d) The normal modes of a layered, incompressible Maxwell half-space. J Geophys 57:106–117Google Scholar
  63. Wolf D (1991a) Viscoelastodynamics of a stratified, compressible planet: incremental field equations and short- and long-time asymptotes. Geophys J Int 104:401–417CrossRefGoogle Scholar
  64. Wolf D (1991b) Boussinesq’s problem of viscoelasticity. Terra Nova 3:401–407CrossRefGoogle Scholar
  65. Wolf D (1994) Lamé’s problem of gravitational viscoelasticity: the isochemical, incompressible planet. Geophys J Int 116:321–348CrossRefGoogle Scholar
  66. Wolf D (1997) Gravitational viscoelastodynamics for a hydrostatic planet. Publ Deutsch Geod Komm Ser C 452:96Google Scholar
  67. Wolf D, Kaufmann G (2000) Effects due to compressional and compositional density stratification on load-induced Maxwell-viscoelastic perturbations. Geophys J Int 140:51–62CrossRefGoogle Scholar
  68. Wu P (1990) Deformation of internal boundaries in a viscoelastic earth and topographic coupling between the mantle and the core. Geophys J Int 101:213–231CrossRefGoogle Scholar
  69. Wu P (1992) Viscoelastic versus viscous deformation and the advection of prestress. Geophys J Int 108:136–142CrossRefGoogle Scholar
  70. Wu P, Ni Z (1996) Some analytical solutions for the viscoelastic gravitational relaxation of a two-layer non-self-gravitating incompressible spherical earth. Geophys J Int 126:413–436CrossRefGoogle Scholar
  71. Wu P, Peltier WR (1982) Viscous gravitational relaxation. Geophys J R Astron Soc 70:435–485CrossRefMATHGoogle Scholar
  72. Wu J, Yuen DA (1991) Post-glacial relaxation of a viscously stratified compressible mantle. Geophys J Int 104:331–349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Geodesy and Remote SensingGerman Research Center for Geosciences GFZTelegrafenberg, PotsdamGermany

Personalised recommendations