Geomathematics: Its Role, Its Aim, and Its Potential

  • Prof.Willi Freeden
Living reference work entry

Latest version View entry history


During the last decades, geosciences and geoengineering were influenced by two essential scenarios: First, the technological progress has completely changed the observational and measurement techniques. Modern high-speed computers and satellite-based techniques are more and more entering all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, and its environment and about an expected shortage of natural resources. Obviously, both aspects, viz., efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne, as well as spaceborne data of better and better quality, explain the strong need of new mathematical structures, tools, and methods, i.e., geomathematics.This paper deals with geomathematics, its role, its aim, and its potential. Moreover, the “circuit” geomathematics is exemplified by three problems involving the Earth’s structure, namely, gravity field determination from terrestrial deflections of the vertical, ocean flow modeling from satellite (altimeter measured) ocean topography, and reservoir detection from (acoustic) wave tomography.


Mantle Plume Geoidal Height Equipotential Surface Gravity Disturbance Plumb Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This introductory chapter is based on the German note “W. Freeden (2009): Geomathematik, was ist das überhaupt?, Jahresbericht der Deutschen Mathematiker Vereinigung (DMV), JB.111, Heft 3, 125–152.” I am obliged to the publisher Vieweg+Teubner for giving the permission for an English translation of essential parts of the original version.

Particular thanks go to Dr. Helga Nutz for reading an earlier version and eliminating some inconsistencies.

Furthermore, I would like to thank my Geomathematics Group, Kaiserslautern, for the assistance in numerical calculation as well as graphical illustration concerning the three exemplary circuits.


  1. Achenbach JD (1973) Wave propagation in elastic solids. North Holland, New YorkzbMATHGoogle Scholar
  2. Albertella A, Savcenko R, Bosch W, Rummel R (2008) Dynamic ocean topography – the geodetic approach. IAPG/FESG Mitteilungen, 27, TU MünchenGoogle Scholar
  3. Ansorge R, Sonar T (2009) Mathematical models of fluid dynamics, 2nd updated edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. Augustin M (2014) A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs. Phd-thesis, Geomathematics Group, University of KaiserslauternGoogle Scholar
  5. Augustin M, Freeden W, Gerhards C, Möhringer S, Ostermann I (2012) Mathematische Methoden in der Geothermie. Math Semesterber 59:1–28MathSciNetCrossRefzbMATHGoogle Scholar
  6. Bach V, Fraunholz W, Freeden W, Hein F, Müller J, Müller V, Stoll H, von Weizsäcker H, Fischer H (2004) Curriculare Standards des Fachs Mathematik in Rheinland-Pfalz (Vorsitz: W. Freeden). Studie: Reform der Lehrerinnen- und Lehrerausbildung, MWWFK Rheinland-PfalzGoogle Scholar
  7. Bauer M, Freeden W, Jacobi H, Neu T (eds) (2014) Handbuch Tiefe Geothermie. Springer, HeidelbergGoogle Scholar
  8. Baysal E, Kosloff DD, Sherwood JWC (1984) A two-way nonreflecting wave equation. Geophysics 49(2):132–141CrossRefGoogle Scholar
  9. Beutelspacher S (2001) In Mathe war ich immer schlecht. Vieweg, WiesbadenCrossRefzbMATHGoogle Scholar
  10. Biondi BL (2006) Three-dimensional seismic imaging. Society of Exploration Geophysicists, TulsaGoogle Scholar
  11. Bruns EH (1878) Die Figur der Erde. Publikation Königl. Preussisch. Geodätisches Institut. P. Stankiewicz, BerlinGoogle Scholar
  12. Claerbout J (2009) Basic earth imaging. Stanford University Press, StanfordGoogle Scholar
  13. Dahlen FA, Tromp J (1998) Theoretical global seismology. Princeton University Press, PrincetonGoogle Scholar
  14. Emmermann R, Raiser B (1997) Das System Erde – Forschungsgegenstand des GFZ. Vorwort des GFZ-Jahresberichts 1996/1997, GeoForschungsZentrum, PotsdamGoogle Scholar
  15. Engl HW, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer Academic, Dordrecht/BostonCrossRefzbMATHGoogle Scholar
  16. Evans LD (2002) Partial differential equation, 3rd printing. American Mathematical Society, ProvidenceGoogle Scholar
  17. Fehlinger T (2009) Multiscale formulations for the disturbing potential and the deflections of the vertical in locally reflected physical geodesy. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, MünchenGoogle Scholar
  18. Fengler MJ, Freeden W (2005) A non-linear Galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible Navier–Stokes equation on the sphere. SIAM J Sci Comput 27:967–994MathSciNetCrossRefzbMATHGoogle Scholar
  19. Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Progress in geodetic science at GW 98, pp 225–236, Shaker Verlag, AachenGoogle Scholar
  20. Freeden W (1999) Multiscale modelling of spaceborne geodata. B.G. Teubner, Stuttgart/LeipzigzbMATHGoogle Scholar
  21. Freeden W (2009) Geomathematik, was ist das überhaupt? Jahresbericht der Deutschen Mathematiker Vereinigung (DMV), Vieweg+Teubner, JB. 111, Heft, vol 3, pp 125–152Google Scholar
  22. Freeden W (2011) Metaharmonic lattice point theory. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  23. Freeden W, Blick C (2013) Signal decorrelation by means of multiscale methods. World Min 65(5):1–15Google Scholar
  24. Freeden W, Gerhards C (2010) Poloidal and toroidal fields in terms of locally supported vector wavelets. Math Geosci 42:817–838MathSciNetCrossRefzbMATHGoogle Scholar
  25. Freeden W, Gerhards C (2013) Geomathematically oriented potential theory. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  26. Freeden W, Gutting M (2013) Special functions of mathematical (geo-)sciences. Birkhäuser, BaselCrossRefGoogle Scholar
  27. Freeden W, Maier T (2002) Multiscale denoising of spherical functions: basic theory and numerical aspects. Electron Trans Numer Anal 14:40–62MathSciNetGoogle Scholar
  28. Freeden W, Mayer T (2003) Wavelets generated by layer potentials. Appl Comput Harm Anal (ACHA) 14:195–237MathSciNetCrossRefzbMATHGoogle Scholar
  29. Freeden W, Michel V (2004) Multiscale potential theory (with applications to geoscience). Birkhäuser, Boston/Basel/BerlinCrossRefzbMATHGoogle Scholar
  30. Freeden W, Nutz H (2014) Mathematische Methoden. In: Bauer M, Freeden W, Jacobi H, Neu T, Herausgeber (eds) Handbuch Tiefe Geothermie. Springer, HeidelbergGoogle Scholar
  31. Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences – a scalar, vectorial, and tensorial setup. Springer, Berlin/HeidelbergzbMATHGoogle Scholar
  32. Freeden W, Wolf K (2008) Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math Semesterber 56:53–77MathSciNetCrossRefGoogle Scholar
  33. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). Oxford/Clarendon, OxfordzbMATHGoogle Scholar
  34. Freeden W, Michel D, Michel V (2005) Local multiscale approximations of geostrophic ocean flow: theoretical background and aspects of scientific computing. Mar Geod 28:313–329CrossRefGoogle Scholar
  35. Freeden W, Fehlinger T, Klug M, Mathar D, Wolf K (2009) Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J Geod 83:1171–1191CrossRefGoogle Scholar
  36. Gauss, C.F. (1863) Werke, Band 5, Dietrich GöttingenGoogle Scholar
  37. Gerhards C (2011) Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modelling. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, MünchenGoogle Scholar
  38. Grafarend EW (2001) The spherical horizontal and spherical vertical boundary value problem – vertical deflections and geoidal undulations – the completed Meissl diagram. J Geod 75:363–390CrossRefzbMATHGoogle Scholar
  39. Groten E (1979) Geodesy and the Earth’s gravity field I+II. Dümmler, BonnGoogle Scholar
  40. Gutting M (2007) Fast multipole methods for oblique derivative problems. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, AachenGoogle Scholar
  41. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San FranciscoGoogle Scholar
  42. Haar A (1910) Zur Theorie der orthogonalen Funktionssysteme. Math Ann 69:331–371MathSciNetCrossRefzbMATHGoogle Scholar
  43. Helmert FR (1881) Die mathematischen und physikalischen Theorien der Höheren Geodäsie 1+2, B.G. Teubner, LeipzigGoogle Scholar
  44. Ilyasov M (2011) A tree algorithm for Helmholtz potential wavelets on non-smooth surfaces: theoretical background and application to seismic data processing. PhD-thesis, Geomathematics Group, University of KaiserslauternGoogle Scholar
  45. Jakobs F, Meyer H (1992) Geophysik – Signale aus der Erde. Teubner, LeipzigCrossRefGoogle Scholar
  46. Kümmerer B (2002) Mathematik. Campus, Spektrum der Wissenschaftsverlagsgesellschaft, pp 1–15Google Scholar
  47. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Shinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP-1998-206861, NASA Goddard Space Flight Center, GreenbeltGoogle Scholar
  48. Listing JB (1873) Über unsere jetzige Kenntnis der Gestalt und Größe der Erde. Dietrich GöttingenGoogle Scholar
  49. Marks DL (2013) A family of approximations spanning the Born and Rytov scattering series. Opt Exp 14:8837–8848CrossRefGoogle Scholar
  50. Martin GS, Marfurt KJ, Larsen S (2002) Marmousi-2: an updated model for the investigation of AVO in structurally complex areas. In: Proceedings, SEG annual meeting, Salt Lake CityGoogle Scholar
  51. Meissl P (1971) On the linearisation of the geodetic boundary value problem. Report No. 152, Department of Geodetic Science, The Ohio State University, Columbo, OHGoogle Scholar
  52. Michel V (2002) A multiscale approximation for operator equations in separable Hilbert spaces – case study: reconstruction and description of the Earth’s interior. Habilitation-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, AachenGoogle Scholar
  53. Michel V (2013) Lectures on constructive approximation – Fourier, spline, and wavelet methods on the real line, the sphere, and the ball. Birkhäuser, BostonzbMATHGoogle Scholar
  54. Müller C (1969) Foundations of the mathematical theory of electromagnetic waves. Springer, Berlin/Heidelberg/New YorkCrossRefzbMATHGoogle Scholar
  55. Nashed MZ (1981) Operator-theoretic and computational approaches to ill-posed problems with application to antenna theory. IEEE Trans Antennas Propag 29:220–231MathSciNetCrossRefGoogle Scholar
  56. Nerem RS, Koblinski CJ (1994) The geoid and ocean circulation. In: Vanicek P, Christon NT (eds) Geoid and its geophysical interpretations. CRC, Boca Raton, pp 321–338Google Scholar
  57. Neumann F (1887) Vorlesungen über die Theorie des Potentials und der Kugelfunktionen. Teubner, Leipzig, pp 135–154Google Scholar
  58. Neunzert H, Rosenberger B (1991) Schlüssel zur Mathematik. Econ, DüsseldorfzbMATHGoogle Scholar
  59. Nolet G (2008) Seismic tomography: imaging the interior of the Earth and Sun. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  60. Nutz H (2002) A unified setup of gravitational observables. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Shaker, AachenGoogle Scholar
  61. Ostermann I (2011) Modeling heat transport in deep geothermal systems by radial basis functions. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, MünchenGoogle Scholar
  62. Pedlovsky J (1979) Geophysical fluid dynamics. Springer, New York/Heidelberg/BerlinCrossRefGoogle Scholar
  63. Pesch HJ (2002) Schlüsseltechnologie Mathematik. Teubner, Stuttgart/Leipzig/WiesbadenCrossRefGoogle Scholar
  64. Popov MM, Semtchenok NM, Popov, Verdel AR (2006) Gaussian beam migration of multi-valued zero-offset data. In: Proceedings, international conference, days on diffraction, St. Petersburg, pp 225–234Google Scholar
  65. Popov MM, Semtchenok NM, Popov PM, Verdel AR (2008) Reverse time migration with Gaussian beams and velocity analysis applications. In: Extended abstracts, 70th EAGE conference & exhibitions, Rome, F048Google Scholar
  66. Ritter JRR, Christensen UR (eds) (2007) Mantle plumes – a multidisciplinary approach. Springer, HeidelbergGoogle Scholar
  67. Rummel R (2002) Dynamik aus der Schwere – Globales Gravitationsfeld. An den Fronten der Forschung (Kosmos, Erde, Leben), Hrsg. R. Emmermann u.a., Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 122. Versammlung, HalleGoogle Scholar
  68. Rummel R, van Gelderen M (1995) Meissl scheme – spectral characteristics of physical geodesy. Manuscr Geod 20:379–385Google Scholar
  69. Skudrzyk E (1972) The foundations of acoustics. Springer, HeidelbergGoogle Scholar
  70. Snieder R (2002) The Perturbation method in elastic wave scattering and inverse scattering in pure and applied science, general theory of elastic wave. Academic, San Diego, pp 528–542Google Scholar
  71. Sonar T (2001) Angewandte Mathematik, Modellbildung und Informatik: Eine Einführung für Lehramtsstudenten, Lehrer und Schüler. Vieweg, Braunschweig, WiesbadenCrossRefGoogle Scholar
  72. Sonar T (2011) 3000 Jahre Analysis. Springer, Heidelberg/Dordrecht/London/New YorkCrossRefzbMATHGoogle Scholar
  73. Stokes GG (1849) On the variation of gravity at the surface of the earth. Trans Camb Philos Soc 8:672–712; Mathematical and physical papers by George Gabriel Stokes, vol II. Johanson Reprint Corporation, New York, pp 131–171Google Scholar
  74. Tarantola A (1984) Inversion of seismic relation data in the acoustic approximation. Geophysics 49:1259–1266CrossRefGoogle Scholar
  75. Torge W (1991) Geodesy. Walter de Gruyter, BerlinGoogle Scholar
  76. Weyl H (1916) Über die Gleichverteilung von Zahlen mod Eins. Math Ann 77:313–352MathSciNetCrossRefzbMATHGoogle Scholar
  77. Wolf K (2009) Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. PhD-thesis, Geomathematics Group, University of Kaiserslautern, Dr. Hut, MünchenGoogle Scholar
  78. Yilmaz O (1987) Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists, TulsaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geomathematics GroupUniversity of KaiserslauternRhineland-PalatinateGermany

Personalised recommendations