Skip to main content

Confocal Microscopy, Detection

  • Living reference work entry
  • First Online:
Encyclopedia of Microfluidics and Nanofluidics

Synonyms

Confocal laser scanning microscopy (CLSM); Microchannel; Microfluidics; Spinning-disk confocal microscopy

Definition

Confocal laser scanning microscopy (CLSM) is a form of light microscopy that allows for high-contrast imaging and 3-D reconstruction. A confocal microscope employs laser excitation sources focused through pinhole(s) to excite fluorophores in a thin plane of a sample while rejecting out-of-focus light. The result is increased contrast and selective imaging at relatively high resolution across a wide range of wavelengths. Major advantages of confocal microscopy over conventional light microscopy include the availability of laser light sources in a broad range of wavelengths, shallow depth of field, elimination of out-of-focus flare generated by fluorescence, noninvasive (optical) sectioning ability from relatively thick sections, and marginal improvement in axial and lateral resolutions. With regard to micro- and nanofluidics, many of the current detection schemes...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Semwogerere D, Weeks ER (2005) Confocal microscopy. In: Encyclopedia of biomaterials and biomedical engineering, ed. Taylor & Francis, London

    Google Scholar 

  2. Claxton NS, Fellers TJ, Davidson MW (2013) Laser scanning confocal microscopy. Available http://www.olympusfluoview.com/theory/LSCMIntro.pdf

  3. Wilson T (2011) Optical sectioning in fluorescence microscopy. J Microsc 242:111–116

    Article  Google Scholar 

  4. Raben JS, Klein SA, Posner JD, Vlachos PP (2013) Improved accuracy of time-resolved micro-particle image velocimetry using phase-correlation and confocal microscopy. Microfluid Nanofluid 14:431–444

    Article  Google Scholar 

  5. Matsumoto B (ed) (2002) Cell biological applications of confocal microscopy. Academic, San Diego

    Google Scholar 

  6. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243:221–226

    Article  Google Scholar 

  7. Kho KW, Stoddart PR, Harris M, Mazzolini AP (2009) Confocal fluorescence polarization microscopy for linear unmixing of spectrally similar labels. Micron 40:212–217

    Article  Google Scholar 

  8. Sheppard CJR, Gong W, Si K (2011) Polarization effects in 4Pi microscopy. Micron 42:353–359

    Article  Google Scholar 

  9. Busko D, Baluschev S, Crespy D, Turshatov A, Landfester K (2012) New possibilities for materials science with STED microscopy. Micron 43:583–588

    Article  Google Scholar 

  10. Modla S, Czymmek KJ (2011) Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 42:773–792

    Article  Google Scholar 

  11. Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, New York

    Google Scholar 

  12. Edel JB, Lahoud P, Cass AEG, deMello AJ (2007) Discrimination between single Escherichia coli cells using time-resolved confocal spectroscopy. J Phys Chem B 111:1129–1134

    Article  Google Scholar 

  13. Huang B, Wu HK, Bhaya D, Grossman A, Granier S, Kobilka BK et al (2007) Counting low-copy number proteins in a single cell. Science 315:81–84

    Article  Google Scholar 

  14. Mannion JT, Craighead HG (2007) Nanofluidic structures for single biomolecule fluorescent detection. Biopolymers 85:131–143

    Article  Google Scholar 

  15. Volgger V, Conderman C, Betz CS (2013) Confocal laser endomicroscopy in head and neck cancer: steps forward? Curr Opin Otolaryngol Head Neck Surg 21:164–170

    Article  Google Scholar 

  16. Smolyaninov II, Hung YJ, Davis CC (2007) Magnifying superlens in the visible frequency range. Science 315:1699–1701

    Article  Google Scholar 

  17. Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus. Jun 6, 3(3): 20130001. doi:10.1098/rsfs.2013.0001

    Google Scholar 

  18. Chen D, Semwogerere D, Sato J, Breedveld V, Weeks ER (2010) Microscopic structural relaxation in a sheared supercooled colloidal liquid. Phys Rev E 81. doi: http://dx.doi.org/10.1103/PhysRevE.81.011403

    Google Scholar 

  19. Jin SE, Bae JW, Hong SP (2010) Multiscale observation of biological interactions of nanocarriers: from nano to macro. Microsc Res Tech 73:813–823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrienne R. Minerick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Minerick, A.R., Thibaudeau, G. (2013). Confocal Microscopy, Detection. In: Li, D. (eds) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA. https://doi.org/10.1007/978-3-642-27758-0_255-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27758-0_255-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-3-642-27758-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics