Skip to main content

Cell Assays in Microfluidics

  • Living reference work entry
  • First Online:
Encyclopedia of Microfluidics and Nanofluidics

Synonyms

Cell analysis/testing in microfluidic devices; Cell assays/analysis/testing on chip; Phenotypic screening in microfluidic devices/on chip

Definition

A cell assay is defined as measurement and analysis of cellular response to chemical and/or physical stimulus. Cellular responses are diverse: alterations of intracellular and extracellular biochemistry, cell morphology, motility, and growth properties. These responses characterize the cell phenotype and are typically monitored in a culture dish or a multiwell plate, while more recently microfluidic devices have been employed. A cell assay performed in a microfluidic device is sometimes termed an on-chip assay.

High-throughput screening (HTS) is a class of analytical techniques in which many different assays are performed in parallel or very rapidly in succession. Currently, there is great interest in performing cell assays in an HTS format.

High-content screening (HCS) is a cell assay method in which phenotypic changes in live...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    Article  Google Scholar 

  2. Li PC, Harrison DJ (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal Chem 69(8):1564–1568

    Article  Google Scholar 

  3. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8(4):519–526

    Article  Google Scholar 

  4. Bogojevic D, Chamberlain MD, Barbulovic-Nad I, Wheeler AR (2012) A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12(3):627–634

    Article  Google Scholar 

  5. Davidsson R, Boketoft A, Bristulf J, Kotarsky K, Olde B, Owman C, Bengtsson M, Laurell T, Emneus J (2004) Developments toward a microfluidic system for long-term monitoring of dynamic cellular events in immobilized human cells. Anal Chem 76(16):4715–4720

    Article  Google Scholar 

  6. Wheeler AR, Throndset W, Whelan RJ, Leach AM, Zare RN, Liau Y-H, Farrell K, Manger I, Daridon A (2003) Microfluidic device for single cell analysis. Anal Chem 75(14):3581–3586

    Article  Google Scholar 

  7. Lee PJ, Hung PJ, Shaw R, Jan L, Lee LP (2005) Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Appl Phys Lett 86(22):Art. No. 223902

    Article  Google Scholar 

  8. Davidsson R, Johansson B, Passoth V, Bengtsson M, Laurell T, Emneus J (2004) Microfluidic biosensing systems – Part II. Monitoring the dynamic production of glucose and ethanol from microchip-immobilised yeast cells using enzymatic chemiluminescent mu-biosensors. Lab Chip 4(5):488–494

    Article  Google Scholar 

  9. Barbulovic-Nad I, Au SH, Wheeler AR (2010) A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12):1536–1542

    Article  Google Scholar 

  10. Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73(6):1240–1246

    Article  Google Scholar 

  11. Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 76(14):4098–4103

    Article  Google Scholar 

  12. Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL (2005) Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4):401–406

    Article  Google Scholar 

  13. Takayama S, Ostuni E, LeDuc P, Naruse K, Ingber DE, Whitesides GM (2001) Subcellular positioning of small molecules. Nature 411(6841):1016–1016

    Article  Google Scholar 

  14. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138

    Article  Google Scholar 

  15. Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89(1):1–8

    Google Scholar 

  16. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  Google Scholar 

  17. Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN (2004) Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 88(3):399–415

    Article  Google Scholar 

  18. Shackman JG, Dahlgren GM, Peters JL, Kennedy RT (2005) Perfusion and chemical monitoring of living cells on a microfluidic chip. Lab Chip 5(1):56–63

    Article  Google Scholar 

  19. Dishinger JF, Reid KR, Kennedy RT (2009) Quantitative monitoring of insulin secretion from single islets of Langerhans in parallel on a microfluidic chip. Anal Chem 81(8):3119–3127

    Article  Google Scholar 

  20. Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E (2004) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19(7):741–747

    Article  Google Scholar 

  21. Gray BL, Lieu DK, Collins SD, Smith RL, Barakat AI (2002) Microchannel platform for the study of endothelial cell shape and function. Biomed Microdevices 4(1):9–16

    Article  Google Scholar 

  22. Li PCH, Wang WJ, Parameswaran M (2003) An acoustic wave sensor incorporated with a microfluidic chip for analyzing muscle cell contraction. Analyst 128(3):225–231

    Article  Google Scholar 

  23. Young EWK, Simmons CA (2010) Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10(2):143–160

    Article  Google Scholar 

  24. Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van De Water L, Toner M (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    Article  Google Scholar 

  25. Walker GM, Sai JQ, Richmond A, Stremler M, Chung CY, Wikswo JP (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6):611–618

    Article  Google Scholar 

  26. Abhyankar VV, Lokuta MA, Huttenlocher A, Beebe DJ (2006) Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3):389–393

    Article  Google Scholar 

  27. Yap B, Kamm RD (2005) Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98(5):1930–1939

    Article  Google Scholar 

  28. DeBusschere BD, Kovacs GTA (2001) Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosens Bioelectron 16(7–8):543–556

    Article  Google Scholar 

  29. Morin F, Nishimura N, Griscom L, LePioufle B, Fujita H, Takamura Y, Tamiya E (2006) Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens Bioelectron 21(7):1093–1100

    Article  Google Scholar 

  30. Pearce TM, Wilson JA, Oakes SG, Chiu SY, Williams JC (2005) Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 5(1):97–101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Barbulovic-Nad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Barbulovic-Nad, I. (2014). Cell Assays in Microfluidics. In: Li, D. (eds) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA. https://doi.org/10.1007/978-3-642-27758-0_183-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27758-0_183-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-3-642-27758-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics