Skip to main content

Acoustic-Based Biosensors

  • Living reference work entry
  • First Online:
Encyclopedia of Microfluidics and Nanofluidics

Synonyms

Acoustic waves; CMUTs; Medical imaging

Definitions

A biosensor is defined as an analytical device that uses a biological recognition system to target molecules or macromolecules. Biosensors use a physiochemical transducer to convert the signal from the bio-recognition system into a detectable signal [1]. Biosensors consist of three components: (1) the detector, which identifies the stimulus; (2) the transducer, which converts this stimulus to an output; and (3) the output system, which involves amplification and display of the output in an appropriate format [1].

Piezoelectricity is a phenomenon displayed in certain crystals, such as quartz and Rochelle salt, where mechanical stress induces voltage generation and vice versa.

Overview

There is an increasing demand for small, reliable, disposable, and inexpensive sensors in industrial, medical, and a variety of other science and engineering fields. Sensors are one of the fastest growing markets, with annual growth of about 18 %....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lec RM, Lewin PA (1999) Acoustic wave biosensors, engineering in medicine and biology society, 1998. In: Proceedings of the 20th annual international conference of the IEEE, vol 6, pp 2779–2784

    Google Scholar 

  2. Drafts B (2001) Acoustic wave technology sensors. IEEE Trans Microw Theory Tech 49(4):795–802

    Article  Google Scholar 

  3. Piezoelectricity Encyclopædia Britannica (2006) Encyclopædia Britannica online, http://search.eb.com/eb/article-9059986. 25 Aug 2006

  4. Kaspar M et al (2000) Thickness shear mode resonators (‘mass-sensitive devices’) in bioanalysis. Fresenius J Anal Chem 366(6–7):602–610

    Article  Google Scholar 

  5. Sauerbrey G (1959) Use of quartz crystal vibrator for weighting thin films on a microbalance. Z Phys 155:206

    Article  Google Scholar 

  6. Lin Z, Yip CM, Joseph IS, Ward MD (1993) Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Anal Chem 65:1546–1551

    Article  Google Scholar 

  7. Dahint R et al (1994) Acoustic plate mode sensor for immunochemical reactions. Anal Chem 66(18):2888–2892

    Article  Google Scholar 

  8. Milstein L, Das P (1977) Spread spectrum receiver using surface acoustic wave technology. IEEE Trans Commun 25(8):841–847

    Article  Google Scholar 

  9. McGill RA, Chung R, Chrisey DB, Dorsey PC, Matthews P, Pique A, Mlsna TE, Stepnowski JL (1998) Performance optimization of surface acoustic wave chemical sensors. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1370–1380

    Article  Google Scholar 

  10. Lange K, Bender F, Voight A, Gao H, Rapp M (2003) A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection. Anal Chem 75(20):5561–5566

    Article  Google Scholar 

  11. Campbell CK (1984) Simplified computer-aided fabrication of SAW transducer pattern masks. IEEE Trans Sonic Ultrason 31(3):185–186

    Article  Google Scholar 

  12. Chen Y, Emanetoglu NW, Saraf G, Wu P, Lu Y, Parekh A, Merai V, Udovich E, Lu D, Lee DS, Armour EA, Pophristic M (2005) Analysis of SAW properties in ZnO/Al/sub x/Ga/sub 1-x/N/c-Al/sub 2/O/sub 3/structures. IEEE Trans Ultrason Ferroelectr Freq Control 52(7):1161–1169

    Article  Google Scholar 

  13. Ergun AS, Yaralioglu GG, Khuri-Yakub BT (2003) Capacitive micromachined ultrasonic transducers: theory and technology. J Aerosp Eng 16:76–84

    Article  Google Scholar 

  14. Huang Y, Ergun AS, Hæggström E, Badi MH, Khuri-Yakub BT (2003) Fabricating capacitive micromachined ultrasonic transducers with wafer-bonding technology. J Microelectromech Syst 12:128–137

    Article  Google Scholar 

  15. Liren W, Xue W, Sixin W, Xuesong Y, Yuquan C (1996) A two-acoustic-waveguide-channel SH-APM urease biosensor. Eng Med Biol Soc 1:85–86

    Google Scholar 

  16. Davis KA, Leary TR (1989) Continuous liquid-phase piezoelectric biosensor for kinetic immunoassays. Anal Chem 61(11):1227–1230

    Article  Google Scholar 

  17. Okahata Y, Matsunobu Y, Ijiro K, Mukae M, Murakami MK (1992) Hybridization of nucleic acids immobilized on a quartz crystal microbalance. J Am Chem Soc 114:8299–8300

    Article  Google Scholar 

  18. Tessier L et al (1997) Potential of the thickness shear mode acoustic immunosensors for biological analysis. Anal Chim Acta 347:207–217

    Article  Google Scholar 

  19. Dutra RF, Castro CMHB, Azevedo CR, Vinhas E, Malague E, Melo EHM, Lima Filho JL, Kennedy JF (2000) Immobilization of pneumococcal polysaccharide vaccine on silicon oxide wafer for an acoustical biosensor. Biosens Bioelectron 15(9–10):511–514

    Article  Google Scholar 

  20. Caliano G, Carotenuto R, Cianci E, Foglietti V, Caronti A, Iula A, Pappalardo M (2005) Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging. IEEE Trans 52(12):2259–2269

    Google Scholar 

  21. Demirci U, Ergun AS, Oralkan O, Karaman M, Khuri-Yakub BT (2004) Forward-viewing CMUT arrays for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 55:887–895

    Article  Google Scholar 

  22. Yeh DT, Oralkan O, Wygant IO, O’Donnell M, Khuri-Yakub BT (2006) 3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications. IEEE Trans Ultrason Ferroelectr Freq Control 53(6):1202–1211

    Article  Google Scholar 

  23. Knight JG, Degertekin FL (2002) Capacitive micromachined ultrasonic transducers for forward looking intravascular imaging arrays. In: Ultrasonics symposium, 2002, proceedings, vol 2, pp 1079–1082

    Google Scholar 

  24. Jakubik W, Urbanczyk M, Opilski A (2001) Sensor properties of lead phthalocyanine in a surface acoustic wave system. Ultrasonics 39(3):227–232

    Article  Google Scholar 

  25. Scholl G, Schmidt F, Wolff U (2001) Surface acoustic wave devices for sensor applications. Phys Stat Sol A 185(1):47–58

    Article  Google Scholar 

  26. Hoummady M, Campitelli A, Wlodarski W (1997) Acoustic wave sensors: design, sensing mechanisms and applications. Smart Mater Struct 6:647–657

    Article  Google Scholar 

  27. Behling C, Lucklum R, Hauptmann P (1997) Possibilities and limitations in quantitative determination of polymer shear parameters by TSM resonators. Sens Actuators A 61:260–266

    Article  Google Scholar 

  28. Degertekin LF, Guldiken OR, Karaman M (2005) Micromachined capacitive transducer arrays for intravascular ultrasound. Proc SPIE Int Soc Opt Eng 5721:104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Durmuş, N.G., Lin, R.L., Kozberg, M., Dermici, D., Khademhosseini, A., Demirci, U. (2014). Acoustic-Based Biosensors. In: Li, D. (eds) Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA. https://doi.org/10.1007/978-3-642-27758-0_10-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27758-0_10-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Online ISBN: 978-3-642-27758-0

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics