Skip to main content

Chaotic Behavior of Cellular Automata

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Equicontinuity:

All points are equicontinuity points (in compact settings).

Equicontinuity point:

A point for which the orbits of nearby points remain close.

Expansivity:

From two distinct points, orbits eventually separate.

Injectivity:

The next state function is injective.

Linear CA:

A CA with additive local rule.

Regularity:

The set of periodic points is dense.

Sensitivity to initial conditions:

For any point x there exist arbitrary close points whose orbits eventually separate from the orbit of x.

Strong transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any point.

Surjectivity:

The next state function is surjective.

Topological mixing:

There always exist points which definitely move from any arbitrary neighborhood to any other.

Transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any other.

Definition of the Subject

A discrete time dynamical system (DTDS) is a pair 〈X, F〉 where Xis...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Acerbi L, Dennunzio A, Formenti E (2007) Shifting and lifting of cellular automata. In: Third conference on computability in Europe, CiE 2007, Siena, Italy, 18–23 June 2007. Lecture notes in computer science, vol 4497. Springer, Berlin, pp 1–10

    Google Scholar 

  • Adler R, Konheim A, McAndrew J (1965) Topological entropy. Trans Am Math Soc 114:309–319

    Article  MathSciNet  MATH  Google Scholar 

  • Akin E, Auslander E, Berg K (1996) When is a transitive map chaotic? In: Bergelson V, March P, Rosenblatt J (eds) Convergence in ergodic theory and probability. de Gruyter, Berlin, pp 25–40

    Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464

    Article  MathSciNet  MATH  Google Scholar 

  • Assaf D IV, Gadbois S (1992) Definition of chaos. Am Math Mon 99:865

    MathSciNet  Google Scholar 

  • Auslander J, Yorke JA (1980) Interval maps, factors of maps and chaos. Tohoku Math J 32:177–188

    Article  MathSciNet  MATH  Google Scholar 

  • Banks J, Brooks J, Cairns G, Davis G, Stacey P (1992) On Devaney’s definition of chaos. Am Math Mon 99:332–334

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Cervelle J, Formenti E (2005) Some results about chaotic behavior of cellular automata. Theor Comp Sci 349:318–336

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Formenti E, Kurka K (1998) Cellular automata in the Cantor, Besicovitch and Weyl topological spaces. Compl Syst 11:107–123

    MathSciNet  MATH  Google Scholar 

  • Blanchard F, Glasner E, Kolyada S, Maass A (2002) On Li-Yorke pairs. J Reine Angew Math 547:51–68

    MathSciNet  MATH  Google Scholar 

  • Blanchard F, Kurka P, Maass A (1997) Topological and measure-theoretic properties of one-dimensional cellular automata. Phys D 103:86–99

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Maass A (1997) Dynamical properties of expansive one- sided cellular automata. Israel J Math 99:149–174

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Tisseur P (2000) Some properties of cellular automata with equicontinuity points. Ann Inst Henri Poincaré Probab Stat 36:569–582

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boyle M, Kitchens B (1999) Periodic points for cellular automata. Indag Math 10:483–493

    Article  MathSciNet  MATH  Google Scholar 

  • Boyle M, Maass A (2000) Expansive invertible one-sided cellular automata. J Math Soc Jpn 54(4):725–740

    Article  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inform 52:39–80

    MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comp Sci 325:249–271

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comp Sci 244:219–241

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Formenti E, Manzini G, Margara L (2000) Ergodicity, transitivity, and regularity for linear cellular automata. Theor Comp Sci 233:147–164. A preliminary version of this paper has been presented to the Symposium of Theoretical Computer Science (STACS’97). LNCS, vol 1200

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Formenti E, Margara L, Mazoyer J (1997) A shift-invariant metric on S Z inducing a non-trivial topology. In: Mathematical Foundations of Computer Science 1997. Lecture notes in computer science, vol 1295. Springer, Berlin, pp 179–188

    Google Scholar 

  • D’Amico M, Manzini G, Margara L (2003) On computing the entropy of cellular automata. Theor Comp Sci 290:1629–1646

    Article  MathSciNet  MATH  Google Scholar 

  • Denker M, Grillenberger C, Sigmund K (1976) Ergodic theory on compact spaces. Lecture notes in mathematics, vol 527. Springer, Berlin

    Google Scholar 

  • Devaney RL (1989) An Introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Di Lena P (2006) Decidable properties for regular cellular automata. In: Navarro G, Bertolossi L, Koliayakawa Y (eds) Proceedings of fourth IFIP international conference on theoretical computer science. Springer, Santiago de Chile, pp 185–196

    Google Scholar 

  • Durand B, Formenti E, Varouchas G (2003) On undecidability of equicontinuity classification for cellular automata. Discrete Math Theor Comp Sci AB:117–128

    MathSciNet  MATH  Google Scholar 

  • Edgar GA (1990) Measure, topology and fractal geometry. Undergraduate texts in Mathematics. Springer, New York

    Book  Google Scholar 

  • Formenti E (2003) On the sensitivity of additive cellular automata in Besicovitch topologies. Theor Comp Sci 301(1–3):341–354

    Article  MathSciNet  MATH  Google Scholar 

  • Formenti E, Grange A (2003) Number conserving cellular automata II: dynamics. Theor Comp Sci 304(1–3):269–290

    Article  MathSciNet  MATH  Google Scholar 

  • Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math Syst Theor Theor Comp Syst 1(1):1–49

    Article  MathSciNet  MATH  Google Scholar 

  • Glasner E, Weiss B (1993) Sensitive dependence on initial condition. Nonlinearity 6:1067–1075

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Guckenheimer J (1979) Sensitive dependence to initial condition for one-dimensional maps. Commun Math Phys 70:133–160

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1992) Linear cellular automata, substitutions, hierarchical iterated system. In: Fractal geometry and computer graphics. Springer, Berlin

    Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1993) Multifractal decompositions of rescaled evolution sets of equivariant cellular automata: selected examples. Technical report, Institut für Dynamische Systeme, Universität Bremen

    Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1995) Global analysis of self-similarity features of cellular automata: selected examples. Phys D 86:64–80

    Article  MathSciNet  MATH  Google Scholar 

  • Hedlund GA (1969) Endomorphism and automorphism of the shift dynamical system. Math Sy Theor 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Hurd LP, Kari J, Culik K (1992) The topological entropy of cellular automata is uncomputable. Ergodic. Theor Dyn Sy 12:255–265

    MATH  Google Scholar 

  • Hurley M (1990) Ergodic aspects of cellular automata. Ergod Theor Dyn Sy 10:671–685

    MathSciNet  MATH  Google Scholar 

  • Ito M, Osato N, Nasu M (1983) Linear cellular automata over z m . J Comp Sy Sci 27:127–140

    MathSciNet  MATH  Google Scholar 

  • Kannan V, Nagar A (2002) Topological transitivity for discrete dynamical systems. In: Misra JC (ed) Applicable mathematics in golden age. Narosa Pub, New Delhi

    Google Scholar 

  • Kari J (1994a) Reversibility and surjectivity problems of cellular automata. J Comp Sy Sci 48:149–182

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1994b) Rice’s theorem for the limit, set of cellular automata. Theor Comp Sci 127(2):229–254

    Article  MathSciNet  MATH  Google Scholar 

  • Knudsen C (1994) Chaos without nonperiodicity. Am Math Mon 101:563–565

    Article  MathSciNet  MATH  Google Scholar 

  • Kolyada S, Snoha L (1997) Some aspect of topological transitivity – a survey. Grazer Math Ber 334:3–35

    MathSciNet  MATH  Google Scholar 

  • Kurka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergo Theor Dyn Sy 17:417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Kurka P (2004) Topological and symbolic dynamics. Cours Spécialisés, vol 11. Société Mathématique de France, Paris

    Google Scholar 

  • Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    Article  MathSciNet  MATH  Google Scholar 

  • Manzini G, Margara L (1999) A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Z m . Theor Comp Sci 221(1–2):157–177

    Article  MathSciNet  MATH  Google Scholar 

  • Margara L (1999) On some topological properties of linear cellular automata. Kutylowski M, Pacholski L, Wierzbicki T Mathematical foundations of computer science 1999 (MFCS99). Lecture notes in computer science, vol 1672. Springer, Berlin, pp 209–219

    Google Scholar 

  • Moothathu TKS (2005) Homogenity of surjective cellular automata. Discret Contin Dyn Syst 13:195202

    Article  Google Scholar 

  • Morris G, Ward T (1998) Entropy bounds for endomorphisms commuting with k actions. Israel J Math 106:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift. Memoires of the American Mathematical Society, vol 114. American Mathematical Society, Providence

    Google Scholar 

  • Pesin YK (1997) Dimension theory in dynamical systems. Chicago lectures in Mathematics. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indag Math 4:203–210

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA, Afraimovich VS (1993) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dynam 1(1):91–98

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1999) Linear cellular automata and de Bruijn automata. In: Delorme M, Mazoyer J (eds) Cellular automata, a parallel model, number 460 in mathematics and its applications. Kluwer, Dordrecht

    Google Scholar 

  • Takahashi S (1992) Self-similarity of linear cellular automata. J Comput Syst Sci 44:114–140

    Article  MathSciNet  MATH  Google Scholar 

  • Vellekoop M, Berglund R (1994) On intervals, transitivity = chaos. Am Math Mon 101:353–355

    Article  MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Weiss B (1971) Topological transitivity and ergodic measures. Math Syst Theor 5:71–75

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Willson S (1984) Growth rates and fractional dimensions in cellular automata. Phys D 10:69–74

    Article  MathSciNet  MATH  Google Scholar 

  • Willson S (1987a) Computing fractal dimensions for additive cellular automata. Phys D 24:190–206

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Willson S (1987b) The equality of fractional dimensions for certain cellular automata. Phys D 24:179–189

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore, Singapore

    MATH  Google Scholar 

Books and Reviews

  • Akin E (1993) The general topology of dynamical systems. Graduate studies in mathematics, vol 1. American Mathematical Society, Providence

    Google Scholar 

  • Akin E, Kolyada S (2003) Li-Yorke sensitivity. Nonlinearity 16:1421–1433

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Block LS, Coppel WA (1992) Dynamics in one dimension. Springer, Berlin

    Book  MATH  Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kitchens PB (1997) Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Universitext Springer, Berlin

    MATH  Google Scholar 

  • Kolyada SF (2004) Li-Yorke sensitivity and other concepts of chaos. Ukr Math J 56(8):1242–1257

    Article  MathSciNet  MATH  Google Scholar 

  • Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambidge University Press, Cambidge

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Interlink/MIUR project “Cellular Automata:

Topological Properties, Chaos and Associated Formal Languages”, by the ANR Blanc Project “Sycomore” and by the PRIN/MIUR project “Formal Languages and Automata: Mathematical and Applicative Aspects”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Cervelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Cervelle, J., Dennunzio, A., Formenti, E. (2017). Chaotic Behavior of Cellular Automata. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_65-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_65-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics