Skip to main content

Tsunami Sedimentology

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Complexity and Systems Science
  • 564 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Closure depth:

Is a key parameter in coastal processes and marks the limit where waves interact with sea bottom sediments.

Cross-lamination:

An arrangement of strata that are locally inclined at some angle to the overall planar orientation of the stratification.

Heavy minerals:

Minerals with a density above 2.9 g/cm3.

Laminae :

Thin layer of sediment or sedimentary rock.

Loading structures:

Deformation sediment structure formed during soft-sediment deformation due to overlying weight.

Microtextures:

Microscopic imprints in the surface of sediment grains. Typically analyzed after observation under the scanning electron microscope that allows significant magnifications of the grains.

Mud drapes:

Sedimentation of fine sediments on top of coarser layers occurring only under low-flow conditions.

Normal grading:

Fining-upward sequence with coarser sediments at the base progressively becoming finer to the top.

Parallel lamination or horizontal lamination:

Unit or layer typically with a horizontal base and parallel overlaying laminae.

Rip-up clasts:

(Typically fine) material eroded from the underlying layers and incorporated in the (tsunamigenic or storm) deposits.

Sediment structures:

Macroscopic three-dimensional features of sedimentary rocks or sediments recording processes occurring during deposition or between deposition and lithification. Their recognition and application are relevant in the definition of depositional environments, fabric, history, or surface processes. Primary sedimentary structures occur in clastic sediments and produced by the same processes (waves, currents, etc.) that caused deposition and includes plane bedding and cross-bedding. Secondary sedimentary structures are caused by postdepositional processes, including biogenic, chemical, and mechanical disruption of sediment.

Sedimentology:

Field of earth sciences studying sediments and/or sedimentary rocks and the processes responsible for their formation.

Tsunami:

Gravity wave system following a large-scale disturbance of the sea surface. This disturbance is caused by a vertical displacement of the water column as a result of an earthquake, landslide, volcanic event, or meteor impact. Tsunami waves are characterized by its long wave length and high velocity (in deeper ocean).

Tsunami deposit:

Sedimentary evidence detected in coastal stratigraphy resulting from tsunami inundation and its associated sediment transport and deposition.

Bibliography

Primary Literature

  • Andrade C (1992) Tsunami generated forms in the Algarve Barrier Islands (South Portugal). Sci Tsunami Haz 10(1):21–34

    Google Scholar 

  • Babu N, Suresh Babu DS, Mohan Das PN (2007) Impact of tsunami on texture and mineralogy of a major placer deposit in southwest coast of India. Environ Geol 52:71–80

    Google Scholar 

  • Bahlburg H, Spiske M (2011) Sedimentology of tsunami inflow and backflow deposits: key differences revealed in a modern example. Sedimentology. doi:10.1111/j.1365-3091.2011.01295.x

    Google Scholar 

  • Bahlburg H, Weiss R (2006) Sedimentology of the December 26, 2004, Sumatra tsunami deposits in eastern India (Tamil Nadu) and Kenya. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-006-0148-9, 1–15.

    Google Scholar 

  • Bondevik S, Svendsen JI, Mangerud J (1997) Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. Sedimentology 44:1115–1131

    Article  Google Scholar 

  • Bondevik S, Mangerud J, Dawson S, Dawson A, Lohne à (2005) Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quat Sci Rev 24:1757–1775

    Article  ADS  Google Scholar 

  • Bruzzi C, Prone A (2000) A method of sedimentological identification of storm and tsunami deposits: exoscopic analysis, preliminary results. Quaternaire 11(3–4):167–177

    Article  Google Scholar 

  • Chagué-Goff C (2010) Chemical signatures of palaeotsunamis: a forgotten proxy? Mar Geol 271:67–71

    Article  Google Scholar 

  • Chagué-Goff C, Dawson S, Goff JR, Zachariasen J, Berryman KR, Garnett DL, Waldron HM, Mildenhall DC (2002) A tsunami (ca. 6300 years BP) and other Holocene environmental changes, northern Hawke’s Bay, New Zealand. Sediment Geol 150:89–102

    Article  ADS  Google Scholar 

  • Chagué-Goff C, Schneider J-L, Goff JR, Dominey-Howes D, Strotz L (2011) Expanding the proxy toolkit to help identify past events Lessons from the 2004 Indian Ocean Tsunami and the 2009 South Pacific Tsunami. Earth Sci Rev 107:107–122

    Article  ADS  Google Scholar 

  • Choowong M, Murakoshi N, Hisada K-I, Charusiri P, Charoentitirat T, Chutakositkanon V, Jankaew K, Kanjanapayont P, Phantuwongraj S (2008) 2004 Indian Ocean tsunami inflow and outflow at Phuket, Thailand. Mar Geol 248:179–192

    Article  Google Scholar 

  • Choowong M, Phantuwongraj S, Charoentitirat T, Chutakositkanon V, Yumuang S, Charusiri P (2009) Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand. Geomorphology 104:134–142

    Article  ADS  Google Scholar 

  • Clague JJ, Bobrowsky PT, Hutchinson I (2000) A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quaternary Science Reviews 19:849–863

    Article  ADS  Google Scholar 

  • Costa PJM (2006) Geological recognition of abrupt marine invasions in two coastal areas of Portugal, MPhil thesis, p. 139

    Google Scholar 

  • Costa PJM, Andrade C, Freitas MC, Oliveira MA, Jouanneau JM (2009) Preliminary results of exoscopic analysis of quartz grains deposited by a Palaeotsunami in Salgados Lowland (Algarve, Portugal). J Coast Res 56:39–43

    Google Scholar 

  • Costa PJM (2012), Sedimentological signatures of extreme marine inundations, PhD thesis, 245 pp, Universidade de Lisboa, Portugal.

    Google Scholar 

  • Costa PJM, Andrade C, Dawson AG, Mahaney WC, Freitas MC, Paris R, Taborda R (2012a) Microtextural characteristics of quartz grains transported and deposited by tsunamis and storms. Sediment Geol 275:55–69

    Article  ADS  Google Scholar 

  • Costa PJM, Andrade C, Freitas MC, Oliveira MA, Lopes V, Dawson AG, Moreno J, Fatela F, Jouanneau JM (2012b) A tsunami record in the sedimentary archive of the central Algarve coast, Portugal: characterizing sediment, reconstructing sources and inundation paths. Holocene 22:899–914

    Article  Google Scholar 

  • Costa PJM, Andrade C, Cascalho J, Dawson AG, Freitas MC, Paris R, Dawson S (2015) Heavy mineral assemblages of onshore palaeotsunami sediments. The Holocene 25(5):795–809

    Google Scholar 

  • Dahanayake K, Kulasena N (2008) Recognition of diagnostic criteria for recent- and paleo-tsunami sediments from Sri Lanka. Mar Geol 254:180–186

    Article  Google Scholar 

  • Dawson AG (1994) Geomorphological effects of tsunami run-up and backwash. Geomorphology 10:83–94

    Article  ADS  Google Scholar 

  • Dawson AG (1999) Linking tsunami deposits, submarine slides and offshore earthquakes. Quat Int 60:119–126

    Article  Google Scholar 

  • Dawson S, Smith DE (2000) The sedimentology of Middle Holocene tsunami facies in northern Sutherland, Scotland, UK. Mar Geol 170:69–79

    Article  Google Scholar 

  • Dawson AG, Stewart I (2007) Tsunami deposits in the geological record. Sediment Geol SEDGEO-03769:18

    Google Scholar 

  • Dawson AG, Long D, Smith DE (1988) The storegga slides: evidence from eastern Scotland for a possible tsunami. Mar Geol 82:271–276

    Article  Google Scholar 

  • Dawson AG, Hindson R, Andrade C, Freitas C, Parish R, Baterman R (1995) Tsunami sedimentation associated with the Lisbon earthquake of 1 November AD 1755: Boca do Rio, Algarve, Portugal. The Holocene 5(2):209–215

    Article  Google Scholar 

  • Dawson AG, Shi S, Dawson S, Takahashi T, Shuto N (1996a) Coastal sedimentation associated with the June 2nd and 3rd, 1994 tsunami in Rajegwesi, Java. Quat Sci Rev 15:901–912

    Article  ADS  Google Scholar 

  • Dawson S, Smith DE, Ruffman A, Shi S (1996b) The diatom biostratigraphy of tsunami sediments: examples from recent and middle holocene events. Phys Chem Earth 21:87–92

    Article  Google Scholar 

  • Donato SV, Reinhardt EG, Boyce JI, Rothaus R, Vosmer T (2008) Identifying tsunami deposits using bivalve shell taphonomy. Geology 36(3):199–202

    Article  ADS  Google Scholar 

  • Font E, Nascimento C, Omira R, Baptista MA, Silva PF (2010) Identification of tsunami-induced deposits using numerical modeling and rock magnetism techniques: a study case of the 1755 Lisbon tsunami in Algarve, Portugal. Phys Earth Planet In 182:187–198

    Article  ADS  Google Scholar 

  • Fujino S, Naruse H, Matsumoto D, Jarupongsakul T, Sphawajruksakul A, Sakakura N (2009) Stratigraphic evidence for pre-2004 tsunamis in southwestern Thailand. Mar Geol 262:25–28

    Article  Google Scholar 

  • Gelfenbaum G, Jaffe B (2003) Erosion and Sedimentation from the 17 July, 1998, Papua New Guinea Tsunami. Pure Appl Geophys 160:1969–1999

    Article  ADS  Google Scholar 

  • Goff J, McFadgen BG, Chagué-Goff C (2004) Sedimentary differences between the 2002 Easter storm and the 15th-century Okoropunga tsunami, southeastern North Island, New Zealand. Mar Geol 204:235–250

    Article  Google Scholar 

  • Goff J, McFadgen B, Wells A, Hicks M (2008) Seismic signals in coastal dune systems. Earth Sci Rev 89:73–77

    Article  ADS  Google Scholar 

  • Goff J, Pearce S, Nichol SL, Chagué-Goff C, Horrocks M, Strotz L (2010a) Multi-proxy records of regionally-sourced tsunamis, New Zealand. Geomorphology 118:369–382

    Article  ADS  Google Scholar 

  • Goff J, Weiss R, Courtney C, Dominey-Howes D (2010b) Testing the hypothesis for tsunami boulder deposition from suspension. Mar Geol 277:73–77

    Article  Google Scholar 

  • Goto K, Kawana T, Imamura F (2010a) Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan. Earth Sci Rev 102:77–99

    Article  ADS  Google Scholar 

  • Goto K, Okada K, Imamura F (2010b) Numerical analysis of boulder transport by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Mar Geol 268:97–105

    Article  Google Scholar 

  • Hindson RA, Andrade C (1999) Sedimentation and hydrodynamic processes associated with the tsunami generated by the 1755 Lisbon earthquake. Quat Int 56:27–38

    Article  Google Scholar 

  • Hindson RA, Andrade C, Dawson AG (1996) Sedimentary processes associated with the tsunami generated by the 1755 Lisbon earthquake on the Algarve coast, Portugal. Phys Chem Earth 21:57–63

    Article  Google Scholar 

  • Hori K, Kuzumoto R, Hirouchi D, Umitsu M, Janjirawuttikul N, Patanakanog B (2007) Horizontal and vertical variation of 2004 Indian tsunami deposits: an example of two transects along the western coast of Thailand. Mar Geol 239:163–172

    Article  Google Scholar 

  • Jagodzinski R, Sternal B, Szczucinski W, Lorenc S (2009) Heavy minerals in 2004 tsunami deposits on Kho Khao Island, Thailand, Pol. J Environ Studies 18:103–110

    Google Scholar 

  • Jagodziński R, Sternal B, Szczuciński W, Chagué-Goff C, Sugawara D (2012) Heavy minerals in the 2011 Tohoku-oki tsunami deposits – insights into sediment sources and hydrodynamics. Sediment Geol 282:57–64

    Article  ADS  Google Scholar 

  • Kortekaas S, Dawson AG (2007) Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal. Sediment Geol 200(3–4):208–221

    Article  ADS  Google Scholar 

  • Koster B (2012) Ground penetrating radar (GPR) investigations on tsuna-migenic deposits – Examples from southern Spain and Greece. Quat Int 279–280:254

    Article  Google Scholar 

  • Koster B (2014). Modern approaches in palaeotsunami research. PhD thesis, 146 pp., RWTH University, Germany.

    Google Scholar 

  • Mamo B, Strotz L, Dominey-Howes D (2009) Tsunami sediments and their foraminiferal assemblages. Earth Sci Rev 96:263–278

    Article  ADS  Google Scholar 

  • Minoura K, Gusiakov VG, Kurbatov A, Takeuti S, Svendsen JI, Bondevik S, Oda T (1996) Tsunami sedimentation associated with the 1923 Kamchatka earthquake. Sediment Geol 106:145–154

    Article  ADS  Google Scholar 

  • Moore AL, McAdoo BG, Ruffman A (2007) Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sediment Geol 200:336–346

    Article  ADS  Google Scholar 

  • Morton RA, Gelfenbaum G, Jaffe BE (2007) Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment Geol 200:184–207

    Article  ADS  Google Scholar 

  • Morton RA, Goff JR, Nichol SL (2008) Hydrodynamic implications of textural trends in sand deposits of the 2004 tsunami in Sri Lanka. Sediment Geol. doi:10.1016/j.sedgeo.2008.03.008, 40

    Google Scholar 

  • Nanayama F, Shigeno K, Satake K, Shimokawa K, Koitabashi S, Miyasaka S, Ishii M (2000) Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment Geol 135:255–264

    Article  ADS  Google Scholar 

  • Nanayama F, Furukawa R, Shigeno K, Makino A, Soeda Y, Igarashi Y (2007) Nine unusually large tsunami deposits from the past 4000 years at Kiritappu marsh along the southern Kuril Trench. Sediment Geol 200:275–294

    Article  ADS  Google Scholar 

  • Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84

    Article  Google Scholar 

  • Narayana AC, Tatavarti R, Shinu N, Subeer A (2007) Tsunami of December 26, 2004 on the southwest coast of India: post-tsunami geomorphic and sediment characteristics. Mar Geol 242:155–168

    Article  Google Scholar 

  • Nott J (1997) Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause – tsunami or tropical cyclone. Mar Geol 141:193–207

    Article  Google Scholar 

  • Paris R, Lavigne F, Wassmer P, Sartohadi J (2007) Coastal sedimentation associated with the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Mar Geol 238:93–106

    Article  Google Scholar 

  • Paris R, Wassmer P, Sartohadi J, Lavigne F, Barthomeuf B, Desgages E, Grancher D, Baumert P, Vautier F, Brunstein D, Gomez C (2009) Tsunamis as geomorphic crises: lessons from the December 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Geomorphology 104:59–72

    Article  ADS  Google Scholar 

  • Sawai Y, Jankaew K, Martin ME, Prendergast A, Choowong M, Charoentitirat T (2009) Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean tsunami at Phra Thong Island, Thailand. Mar Micropaleontol 73:70–79

    Article  Google Scholar 

  • Scheffers A, Kelletat D (2005) Tsunami relics on the coastal landscape west of Lisbon, Portugal. Sci Tsunami Haz 23(1):3–16

    Google Scholar 

  • Scheffers A, Scheffers S (2007) Tsunami deposits on the coastline of west Crete (Greece). Earth Planet Sci Lett. doi:10.1016/j.epsl.2007.05.041, 32

    Google Scholar 

  • Scheffers A, Shiki T, Tsuji Y, Yamazaki T, Minoura K (2008) Tsunami boulder deposits, Tsunamiites. Elsevier, Amsterdam, pp 299–317

    Google Scholar 

  • Shennan I, Long AJ, Rutherford MM, Green FM, Innes JB, Lloyd JM, Zong Y, Walker KJ (1996) Tidal marsh stratigraphy, sea-level change and large earthquakes, i: a 5000 year record in washington, U.S.A. Quat Sci Rev 15:1023–1059

    Article  ADS  Google Scholar 

  • Shi S, Smith DE (2003) Coastal tsunami geomorphological impacts and sedimentation processes: case studies of modern and prehistorical events. In: International conference on estuaries and coasts, 9–11 Nov 2003, Hangzhou

    Google Scholar 

  • Shiki T, Tachibana T, Fujiwara O, Goto K, Nanayama F, Yamazaki T, Shiki T, Tsuji Y, Yamazaki T, Minoura K (2008) Characteristic features of Tsunamiites, Tsunamiites. Elsevier, Amsterdam, pp 319–340

    Google Scholar 

  • Srinivasalu S, Thangadurai N, Switzer AD, Mohan VR, Ayyamperumal T (2007) Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami. Mar Geol 240:65–75

    Article  Google Scholar 

  • Sugawara D, Minoura K, Imamura F, Shiki T, Tsuji Y, Yamazaki T, Minoura K (2008) Tsunamis and tsunami sedimentology, Tsunamiites. Elsevier, Amsterdam, pp 9–49

    Google Scholar 

  • Switzer AD, Pucillo K, Haredy RA, Jones BG, Bryant EA (2005) Sea-level, storms or tsunami; enigmatic sand sheet deposits in sheltered coastal embayment from southeastern New South Wales Australia. J Coast Res 21:655–663

    Google Scholar 

  • Switzer AD, Bristow CS, Jones BG (2006) Investigation of large-scale washover of a small barrier system on the southeast Australian coast using ground penetrating radar. Sediment Geol 183:145–156

    Article  ADS  Google Scholar 

  • Switzer AD, Jones BG (2008) Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: tsunami or exceptionally large storm? The Holocene, 18:787–803

    Google Scholar 

  • Szczuciński W (2012) The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Nat Hazards 60:115–133

    Article  Google Scholar 

  • Szczucinski W, Chaimanee N, Niedzielski P, Rachlewicz G, Saisuttichai D, Tepsuwan T, Lorenc S, Siepak J (2006) Environmental and geological impacts of the 26 December 2004 Tsunami in coastal zone of Thailand – overview of short and long-term effects. Pol J Environ Stud 15(5):793–810

    Google Scholar 

  • Wassmer P, Schneider J-L, Fonfrage A-V, Lavigne F, Paris R, Gomez C (2010) Use of anisotropy of magnetic susceptibility (AMS) in the study of tsunami deposits: application to the 2004 deposits on the eastern coast of Banda Aceh, North Sumatra, Indonesia. Mar Geol 275:255–272

    Article  Google Scholar 

  • Yawsangratt S, Szczucinski W, Chaimanee N, Chatprasert S, Majewski W, Lorenc S (2012) Evidence of probable paleotsunami deposits on Kho Khao Island, Phang Nga Province, Thailand. Nat Hazards. doi:10.1007/s11069-011-9729-4

    Google Scholar 

Books and Reviews

  • Atwater BF, Moore AL (1992) A tsunami about 1000 years ago in Puget Sound, Washington. Science 258:1614–1617

    Article  ADS  Google Scholar 

  • Bourgeois J (2009) Geologic records and effects of tsunamis: in the sea. Harvard University Press, Cambridge

    Google Scholar 

  • Bryant E, Nott J (2001) Geological indicators of large tsunami in Australia. Nat Hazards 24:231–249

    Article  Google Scholar 

  • Bryant E, Young R, Price D (1992) Evidence of tsunami sedimentation on the southeastern coast of Australia. J Geol 100:753–765

    Article  ADS  Google Scholar 

  • Chandrasekar N (2005) Tsunami of 26th December 2004: observation on Inundation, sedimentation and geomorphology of Kanyakumari coast, South India. In: Satake PA (ed) 22nd Intl. Tsunami Symposium. Xania, pp. 49–56

    Google Scholar 

  • Costa PJM, Andrade C, Freitas MC, Oliveira MA, Silva CMD, Omira R, Taborda R, Baptista MA, Dawson AG (2011) Boulder deposition during major tsunami events. Earth Surf Processes Landf 36:2054–2068

    Article  ADS  Google Scholar 

  • Dawson S (2007) Diatom biostratigraphy of tsunami deposits: examples from the 1998 Papua New Guinea tsunami. Sediment Geol. doi:10.1016/j.sedgeo.2007.01.011, 8

    Google Scholar 

  • Dominey-Howes D (2007) Geological and historical records of tsunami in Australia. Mar Geol 239:99–123

    Article  Google Scholar 

  • Fujiwara O, Kamataki T (2007) Identification of tsunami deposits considering the tsunami waveform: an example of subaqueous tsunami deposits in Holocene shallow bay on southern Boso Peninsula, Central Japan. Sediment Geol 200:295–313

    Article  ADS  Google Scholar 

  • Hemphill-Haley E (1996) Diatoms as an aid in identifying late-Holocene tsunami deposits. The Holocene 6:439–448

    Article  Google Scholar 

  • Higman B, Bourgeois J (2008) Deposits of the 1992 Nicaragua tsunami. In: Shiki T, Tsuji Y, Yamazaki T, Minoura K (eds) Tsunamiites – features and implications. Elsevier, Amsterdam, pp 81–103

    Chapter  Google Scholar 

  • Higman B, Jaffe B (2005) A comparison of grading in deposits from five tsunamis: does tsunami wave duration affect grading patterns?, Eos (Transactions, American Geophysical Union) 86, Abstract T11A-0362

    Google Scholar 

  • Imamura F, Lee HJ, Takahashi T, Shuto N (1997) The highest run-up of the 1993 Hokkaido Nansei-Oki earthquake tsunami. IAMAS – IAPSO Joint Assemblies, Melbourne

    Google Scholar 

  • Lakshmi CSV, Srinivasan P, Murthy SGN, Trivedi D, Nair RR (2010) Granularity and textural analysis as a proxy for extreme wave events in southeast coast of India. J Earth Syst Sci 119:297–305

    Article  ADS  Google Scholar 

  • Matsumoto D, Naruse H, Fujino S, Surphawajruksakul A, Jarupongsakul T, Sakakura N, Murayama M (2008) Truncated flame structures within a deposit of the Indian Ocean Tsunami: evidence of synsedimentary deformation. Sedimentology 55:1559–1570

    Article  ADS  Google Scholar 

  • Paris R, Pérez Torrado FJ, Carracedo JC (2005) Massive flank failures and tsunamis in the Canary Islands: past, present, future. Zeitschrift für Geomorphologie 140:37–54

    Google Scholar 

  • Paris R, Naylor LA, Stephenson WJ (2011) Boulders as a signature of storms on rock coasts. Mar Geol 283:1–11

    Article  Google Scholar 

  • Phantuwongraj S, Choowong M (2011) Tsunamis versus storm deposits from Thailand. Nat Hazards 63:31–50

    Article  Google Scholar 

  • Sato H, Shimamoto T, Tsutsumi A, Kawamoto E (1995) Onshore tsunami deposits caused by the 1993 Southwest Hokkaido and 1983 Japan Sea Earthquakes. Pure Appl Geophys 144:693–717

    Article  ADS  Google Scholar 

  • Switzer AD, Burston JM (2010) Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology 114:42–54

    Article  ADS  Google Scholar 

  • Tappin DR (2007) Sedimentary features of tsunami deposits – Their origin, recognition and discrimination: an introduction. Sediment Geol 200:151–154

    Article  ADS  Google Scholar 

  • Tuttle MP, Ruffman A, Anderson T, Hewitt J (2004) Distinguishing tsunami from storm deposits in eastern North America. The 1929 Grand Banks tsunami versus the 1991 Halloween storm. Seismol Res Lett 75:117–131

    Article  Google Scholar 

  • Williams HFL, Hutchinson I (2000) Stratigraphic and microfossil evidence for late Holocene tsunamis at Swantown Marsh, Whidbey Island, Washington. Quatern Res 54:218–227

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. M. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Costa, P.J.M., Dawson, S. (2015). Tsunami Sedimentology. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_646-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_646-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics