Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Tsunami Hazard and Risk Assessment on the Global Scale

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_642-1

Definition of Subject

Tsunamis are infrequent events with the power to cause massive loss of life, large economic losses, and cascading effects such as destruction of critical facilities. The recurrence of truly disastrous tsunamis at any location may range from hundreds to even thousands of years. To manage the risk from these events, scientists use hazard and risk assessment to better understand the threat. Hazard assessment typically involves quantifying the temporal probability of a tsunami metric (e.g., run-up height at a coastal location) being exceeded within a given time frame. Risk assessment quantifies the probability of damage and loss to exposed assets and population by integrating the results of the hazard assessment with the vulnerability of the exposed elements to the given tsunami metric. Tsunami hazard and risk analysis cannot exploit observational data as extensively as more frequent hazards. Instead, numerical models are used to quantify the magnitude and frequency...

Keywords

Return Period Flow Depth Fragility Curve Vulnerability Function Tsunami Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

A large group of scientists have worked on the global tsunami hazard and risk assessment. For this, we would like to thank our co-workers at Geoscience Australia, NGI, and CIMNE: Gareth Davies, Sylfest Glimsdal, Carl Harbitz, Helge Smebye, Farrokh Nadim, Omar Darío Cardona, and Gabriel A. Bernal. In addition we have received considerable support from collaborating organizations. For this we thank Andrea de Bono at UNEP/GRID Geneva for providing us the exposure dataset and for refining them for use in coastal regions, Stefano Lorito, Roberto Basili, and Jacopo Selva at INGV for providing source information for the Mediterranean, Maria Ana Baptista at IPMA for providing source information offshore Portugal, Eric Geist at USGS for providing source information for the Caribbean region, and Hong Kie Thio at AECOM for his assistance on the PTHA calculations. The authors are also indebted to Nick Horspool, formerly at Geoscience Australia, now at GNS, for his contribution to the earliest part of this work. We finally like to thank UN-ISDR, including Andrew Maskrey, Sahar Safaie, Manuela di Mauro, and Julio Serje, for their co-ordination work that made this possible, as well as for funding NGI's work leading to this paper. This paper is published with the permission of the CEO, Geoscience Australia.

Bibliography

  1. Annaka T, Satake K, Sakakiyama T, Yanagisawa K, Shuto N (2007) Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. Pure Appl Geophys 164:577–592ADSCrossRefGoogle Scholar
  2. Barkan R, ten Brink U, Lin J (2009) Far field tsunami simulations of the 1755 Lisbon earthquake: implications for tsunami hazard to the U.S. East Coast and the Caribbean. Mar Geol 264(1–2):109–122CrossRefGoogle Scholar
  3. Basili R, Tiberti MM, Kastelic V, Romano F, Piatanesi A, Selva J, Lorito S (2013) Integrating geologic fault data into tsunami hazard studies. Nat Hazards Earth Syst Sci 13:1025–1050ADSCrossRefGoogle Scholar
  4. Bazzurro P, Luco N (2005) Accounting for uncertainty and correlation in earthquake loss estimation. In: Proceedings of ICOSSAR, Rome, pp. 2687–2694Google Scholar
  5. Bernal GA (2014) Metodología para la modelación, cálculo y calibración de parámetros de la amenaza sísmica para la evaluación probabilista del riesgo (in Spanish). PhD thesis, Technical University of Catalonia, BarcelonaGoogle Scholar
  6. Berryman K et al (ed) (2005) Review of tsunami hazard and risk in New Zealand. Geological and Nuclear Sciences (GNS), report 2005/104, 140 pGoogle Scholar
  7. Berryman K, Wallace L, Hayes G, Bird P, Wang K, Basili R, Lay T, Stein R, Sagiya T, Rubin C, Barreintos S, Kreemer C, Litchfield N, Pagani M, Gledhill K, Haller K, Costa C (2013) The GEM faulted earth subduction characterisation project, version 1.0, June 2013. http://www.nexus.globalquakemodel.org/gem-faulted-earth/posts
  8. Bilek S and Lay T (1999) Rigidity with depth along interpolate megathrust faults in subduction zones, Nature 400, 443-446. doi:10.1038/22739Google Scholar
  9. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:10.1029/2001GC000252ADSCrossRefGoogle Scholar
  10. Borrero J, Sieh K, Chlieh M, Synolakis C (2006) Tsunami inundation modelling for western Sumatra. Proc Natl Acad Sci U S A 103(52):19673–19677ADSCrossRefGoogle Scholar
  11. Brizuela B, Armigliato A, Tinti S (2014) Assessment of tsunami hazards for the Central American Pacific coast from southern Mexico to northern Peru. Nat Hazards Earth Syst Sci 14:1889–1903. doi:10.5194/nhess-14-1889-2014ADSCrossRefGoogle Scholar
  12. Burbidge D, Cummins P (2007) Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc. Nat Hazards 43:319–331. doi:10.1007/s11069-007-9116-3CrossRefGoogle Scholar
  13. Burbidge D, Cummins PR, Mleczko R, Thio HK (2008a) A probabilistic tsunami hazard assessment for Western Australia. Pure Appl Geophys. doi:10.1007/s00024-008-0421-xGoogle Scholar
  14. Burbidge D, Mleczko R, Thomas C, Cummins P, Nielsen O, Dhu T (2008b) A probabilistic tsunami hazard assessment for Australia. Geoscience Australia Professional Opinion. No.2008/04Google Scholar
  15. Burroughs SF, Tebbens SM (2005) Power-law scaling and probabilistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342ADSCrossRefGoogle Scholar
  16. Cardona OD (2009) La gestión financiera del riesgo de desastre. Instrumentos financieros de retención y transferencia para la Comunidad Andina (in Spanish). PREDECAN, LimaGoogle Scholar
  17. Cardona OD, Ordaz M, Reinoso E, Yamín LE, Barbat AH (2012) CAPRA – comprehensive approach to probabilistic risk assessment: international initiative for risk management efectiveness. In: Proceedings of 15th world conference on earthquake engineering, LisbonGoogle Scholar
  18. Cardona OD, Ordaz M, Mora MG, Salgado-Gálvez MA, Bernal GA, Zuloaga D, Marulanda MC, Yamín LE, González D (2014) Global risk assessment: a fully probabilistic seismic and tropical cyclone wind risk assessment. Int J Disaster Risk Reduct 10:461–476CrossRefGoogle Scholar
  19. Carrier GF, Greenspan HP (1958) Water waves of finite amplitude on a sloping beach. J Fluid Mech 4:97–109ADSMathSciNetCrossRefMATHGoogle Scholar
  20. CIMNE, INGENIAR (2015) Update on the probabilistic global of natural risk at the global level: global risk model. Background paper for the global assessment report on disaster risk reduction 2015. http://www.preventionweb.net/english/hyogo/gar/2015/en/home/documents.html#contributing_papers
  21. CIMNE, ITEC, INGENIAR, EAI (2013) Probabilistic modelling of natural risks at the global level. Global risk model. Background paper for the global assessment report on disaster risk reduction 2013. http://www.preventionweb.net/english/hyogo/gar/2013/en/home/documents.html#contributing_papers
  22. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606Google Scholar
  23. De Bono A, Chatenoux B (2014) A global exposure model for GAR 2015. Input paper for the global assessment report on disaster risk reduction 2015. http://www.preventionweb.net/english/hyogo/gar/2015/en/home/documents.html#contributing_papers
  24. Dominey-Howes D, Papathoma M (2007) Validating a tsunami vulnerability assessment model (the PTVA Model) using field data from the 2004 Indian Ocean tsunami. Nat Hazards 40:113–36CrossRefGoogle Scholar
  25. Dominey-Howes D, Dunbar P, Varner J, Papathoma-Köhle M (2010) Estimating probable maximum loss from a Cascadia tsunami. Nat Hazards 53(1):43–61CrossRefGoogle Scholar
  26. Esteva L (1967) Criterios para la construcción de espectros de diseño sísmico (in Spanish). In: Proceedings of the 3rd pan-American symposium of structures, CaracasGoogle Scholar
  27. Geist E, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314CrossRefGoogle Scholar
  28. Gonzalez FI, Geist EL, Jaffe B et al (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. J Geophys Res Oceans 114:C11023ADSCrossRefGoogle Scholar
  29. Griffin JG, Latief H, Kongko W, Harig S, Horspool N, Hanung R, Rojali A, Maher N, Fountain L, Fuchs A, Hossen J, Upi S, Dewanto SE, Cummins PR (2015) An evaluation of onshore digital elevation models for modelling tsunami inundation zones. Front Earth Sci 3:32. doi:10.3389/feart.2015.00032ADSCrossRefGoogle Scholar
  30. Grilli ST, Dubosq S, Pophet N, Pérignon Y, Kirby JT, Shi F (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Nat Hazards Earth Syst Sci 10:2109–2125. doi:10.5194/nhess-10-2109-2010ADSCrossRefGoogle Scholar
  31. Harbitz CB, Glimsdal S, Løvholt F, Pedersen GK, Vanneste M, Eidsvig UMK, Bungum H (2009) Tsunami hazard assessment and early warning systems for the North East Atlantic. In: Proceedings of DEWS midterm conference, Potsdam, 7–8 July 2009. http://www.dews-conference.org/front_content.php
  32. Harbitz CB, Glimsdal S, Bazin S, Zamora N, Løvholt F, Bungum H, Smebye H, Gauer P, Kjekstad O (2012) Tsunami hazard in the Caribbean: regional exposure derived from credible worst case scenarios. Cont Shelf Res 38:1–23ADSCrossRefGoogle Scholar
  33. Harbitz CB, Løvholt F, Bungum H (2014a) Submarine landslide tsunamis: how extreme and how likely? Nat Hazards 72(3):1341–1374CrossRefGoogle Scholar
  34. Harbitz CB, Glimsdal S, Løvholt F, Kveldsvik V, Pedersen GK, Jensen A (2014b) Rockslide tsunamis in complex fjords: from an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coast Eng 88:101–122. doi:10.1016/j.coastaleng.2014.02.003CrossRefGoogle Scholar
  35. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: a three-dimensional model of global subduction zone geometries. J Geophys Res Solid Earth (1978–2012) 117(B1):2156–2202Google Scholar
  36. Hebert H, Schindele F, Altinok Y, Alpar B, Gazioglu C (2005) Tsunami hazard in the Marmara Sea (Turkey): a numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Mar Geol 215:23–43CrossRefGoogle Scholar
  37. Heidarzadeh M, Kijko A (2011) A probabilistic tsunami hazard assessment for the Makran subduction zone at the Northwestern Indian Ocean. Nat Hazards 56(3):577–593CrossRefGoogle Scholar
  38. Hooper A, Pietrzak J, Simons W, Cui H, Riva R, Naeije M, Terwisscha van Scheltinga A, Schrama E, Stelling G, Socquet A (2013) Importance of horizontal seafloor motion on tsunami height for the 2011 Mw = 9.0 Tohoku-Oki earthquake. Earth Planet Sci Lett 361(1):469–479ADSCrossRefGoogle Scholar
  39. Horspool N, Pranantyo I, Griffin J, Latief H, Natawidjaja DH, Kongko W, Cipta A, Bustaman B, Anugrah SD, Thio HK (2014) A probabilistic tsunami hazard assessment for Indonesia. Nat Hazards Earth Syst Sci 14(11):3105–3122ADSCrossRefGoogle Scholar
  40. Jankaew K, Atwater BF, Sawai Y, Choowong M, Charoentitirat T, Martin ME, Prendergast A (2008) Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455:1228–1231ADSCrossRefGoogle Scholar
  41. Kagan YY, Jackson DD (2013) Tohoku earthquake: a surprise? Bull Seismol Soc Am 103(2B):1181–94CrossRefGoogle Scholar
  42. Kaiser G, Scheele L, Kortenhaus A, Løvholt F, Römer H, Leschka S (2011) The influence of land cover roughness on high resolution tsunami inundation modeling. Nat Hazards Earth Syst Sci 11:2521–2540ADSCrossRefGoogle Scholar
  43. Kaistrenko VM, Pinegina T, Klyachko MA (2003) Evaluation of tsunami hazard for the southern Kamchatka coast using historical and paleotsunami data. In: Yalciner AC, Pelinovsky E, Okal E, Synolakis CE (eds) Submarine landslides and tsunamis. Kluwer, Dordrecht, pp 217–228CrossRefGoogle Scholar
  44. Kanamori H (1972) Mechanisms of tsunami earthquakes. Phys Earth Planet Inter 6:346–359ADSCrossRefGoogle Scholar
  45. Kramer SL (1996) Geotechnical earthquake engineering, Prentice-Hall international series in civil engineering and engineering mechanics. Prentice Hall, Upper Saddle RiverGoogle Scholar
  46. Kulikov EA, Rabinovich AB, Thomson RE (2005) Estimation of tsunami risk for the coasts of Peru and northern Chile. Nat Hazards 35:185–209CrossRefGoogle Scholar
  47. LandScan (2013) High resolution global population data set © UT-Battelle, LLC, operator of Oak Ridge National Laboratory, USA. Dataset is available upon demand to ONRLGoogle Scholar
  48. Lane EM, Gillibrand PA, Wang XA (2013) Probabilistic tsunami hazard study of the Auckland region, Part II: inundation modelling and hazard assessment. Pure Appl Geophys 170(9–10):1635–1646ADSCrossRefGoogle Scholar
  49. Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of earth’s crust. In: Proceedings of Europ Geosciences Union General Assembly 2012, ViennaGoogle Scholar
  50. Legg MR, Borrero JC, Synolakis CE (2004) Tsunami Hazards associated with the Catalina fault in Southern California. Earthquake Spectra 20(3):917–950CrossRefGoogle Scholar
  51. Lin I-C, Tung CC (1982) A preliminary investigation of tsunami hazard. Bull Seismol Soc Am 72(A):2323–2337Google Scholar
  52. Liu Y, Santos A, Wang SM, Shi Y, Liu H, Yuen DA (2007) Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Phys Earth Planet Inter 163:233–244ADSCrossRefGoogle Scholar
  53. Lorito S, Tiberti MM, Basili R, Piatanesi A, Valensise G (2008) Earthquake-generated tsunamis in the Mediterranean Sea: scenarios of potential threats to Southern Italy. J Geophys Res Solid Earth 113(B1):B01301ADSCrossRefGoogle Scholar
  54. Lorito S, Selva J, Basili R, Romano F, Tiberti MM, Piatanesi A (2015) Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophys J Int 200:574–588ADSCrossRefGoogle Scholar
  55. Løvholt F, Bungum H, Harbitz CB, Glimsdal S, Lindholm CD, Pedersen G (2006) Earthquake related tsunami hazard along the western coast of Thailand. Nat Hazards Earth Syst Sci 6:1–19CrossRefGoogle Scholar
  56. Løvholt F, Pedersen G, Gisler G (2008) Oceanic propagation of a potential tsunami from the La Palma Island. J Geophys Res Oceans 113:C09026. doi:10.1029/2007JC004603ADSCrossRefGoogle Scholar
  57. Løvholt F, Glimsdal S, Harbitz CB, Nadim F, Zamora N, Peduzzi P, Dao HI, Smebye H (2012a) Tsunami hazard and exposure on the global scale. Earth-Sci Rev 110(1–4):58–73. doi:10.1016/j.earscirev.2011.10.002, ISSN 0012–8252ADSCrossRefGoogle Scholar
  58. Løvholt F, Kühn D, Bungum H, Harbitz CB, Glimsdal S (2012b) Historical tsunamis and present tsunami hazard in Eastern Indonesia and the Philippines. J Geophys Res Solid Earth 117:B09310. doi:10.1029/2012JB009425ADSGoogle Scholar
  59. Løvholt F, Lynett P, Pedersen G (2013) Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Process Geophys 20:379–395. doi:10.5194/npg-20-379-2013ADSCrossRefGoogle Scholar
  60. Løvholt F, Glimsdal S, Harbitz CB, Horspool N, Smebye H, de Bono A, Nadim F (2014a) Global tsunami hazard and exposure due to large co-seismic slip. Int J Disaster Risk Reduct 10:406–418CrossRefGoogle Scholar
  61. Løvholt F, Setiadi NJ, Birkmann J, Harbitz CB, Bach C, Fernando N, Kaiser G, Nadim F (2014b) Tsunami risk reduction – are we better prepared today than in 2004? Int J Disaster Risk Reduct 10:127–142CrossRefGoogle Scholar
  62. Maqsood T, Wehner M, Ryu H, Edwards M, Dale K, Miller V (2014) GAR15 regional vulnerability functions, Geoscience Australia Record 2014/38Google Scholar
  63. Marulanda MC (2013) Modelación probabilista de pérdidas económicas por sismo para la estimación de la vulnerabilidad fiscal del estado y la gestión financiera del riesgo soberano. PhD thesis (in Spanish), Technical University of Catalonia, BarcelonaGoogle Scholar
  64. Matias LM, Cunha T, Annunziato A, Baptista MA, Carrilho F (2013) Tsunamigenic earthquakes in the Gulf of Cadiz: fault model and recurrence. Nat Hazards Earth Syst Sci 13:1–13. doi:10.5194/nhess-13-1-2013ADSCrossRefGoogle Scholar
  65. Mercado A (2001) Determination of the tsunami hazard for western Puerto Rico from local sources. Sea Grant College Program University of Puerto Rico, P.R. (Report)Google Scholar
  66. Miranda E (1999) Approximate seismic lateral deformation demands in multistory buildings. J Struct Eng 125:417–426CrossRefGoogle Scholar
  67. Monecke K, Finger W, Klarer D, Kongko W, McAdoo BG, Moore AL, Sudrajat SU (2008) A 1,000-year sediment record of tsunami recurrence in northern Sumatra. Nature 455:1232–1234ADSCrossRefGoogle Scholar
  68. NGDC/WDS Global Historical Tsunami Database: https://www.ngdc.noaa.gov/hazard/tsu_db.shtml
  69. NGI and Geoscience Australia (2015) UNISDR global assessment report 2015 – GAR15, Tsunami methodology and result overview. NGI report 20120052-03-RGoogle Scholar
  70. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 74(4):1135–1154Google Scholar
  71. Okal E, Synloakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172:995–1015ADSCrossRefGoogle Scholar
  72. Okal EA, Borrero JC, Synolakis CE (2006) Evaluation of tsunami risk from regional earthquakes at Pisco, Peru. Bull Seismol Soc Am 96(5):1634–1648CrossRefGoogle Scholar
  73. Okal EA, Synolakis CE, Kalligeris N (2011) Tsunami simulations for regional sources in the South China and adjoining Seas. Pure Appl Geophys 168(6–7):1153–1173ADSCrossRefGoogle Scholar
  74. Omira R, Baptista MA, Matias L (2014) Probabilistic tsunami hazard in the Northeast Atlantic from near- and far-field tectonic sources. Pure Appl Geophys 172:901–920ADSCrossRefGoogle Scholar
  75. Ordaz M (2000) Metodología para la evaluación del riesgo sísmico enfocada a la gerencia de seguros por terremoto (in Spanish). Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  76. Ordaz M, Miranda E, Reinoso E, Pérez-Rocha LE (2000) Seismic loss estimation model for Mexico City. In: Proceedings of the 12th world conference on earthquake engineering, AucklandGoogle Scholar
  77. Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohohu-Oki earthquake. Nature 475:373–376. doi:10.1038/nature10227ADSCrossRefGoogle Scholar
  78. Parsons T, Geist E (2009) Tsunami probability in the Caribbean region. Pure Appl Geophys 165:2089–2116ADSCrossRefGoogle Scholar
  79. Pedersen G (2008) Modeling run-up with depth integrated equation models. In: Liu PL-F, Yeh H, Synolakis C (eds) Advanced numerical models for simulating tsunami waves and run-up. World Scientific, Hackensack, pp 3–41CrossRefGoogle Scholar
  80. Pedersen G (2011) Oblique runup of non-breaking solitary waves on an inclined plane. J Fluid Mech 668:582–606. doi:10.1017/S0022112010005343ADSMathSciNetCrossRefMATHGoogle Scholar
  81. Pedersen G, Løvholt F (2008) Documentation of a global Boussiesq solver, Preprint series in applied mathematics, Department of Mathematics, University of Oslo, Norway. http://urn.nb.no/URN:NBN:no-27775
  82. Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Jet-Propulsion Laboratory D-31639. http://www2.jpl.nasa.gov/srtm/SRTM_D31639.pdf
  83. Roger J, Hebert H (2008) The 1856 Djijelli (Algeria) earthquake and tsunami: source parameters and implications for tsunami hazard in the Balearic Islands. Nat Hazards Earth Syst Sci 8:721–731ADSCrossRefGoogle Scholar
  84. Römer H, Willroth P, Kaiser G, Vafeidis AT, Ludwig R, Sterr H, Revilla Diez J (2012) Potential of remote sensing techniques for tsunami hazard and vulnerability analysis – a case study from Phang-Nga province, Thailand. Nat Hazards Earth Syst Sci 12:2103–2126ADSCrossRefGoogle Scholar
  85. Salgado-Gálvez MA, Zuloaga D, Bernal GA, Mora MG, Cardona OD (2014) Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín, Colombia. Bull Earthq Eng 12:671–695CrossRefGoogle Scholar
  86. Salgado-Gálvez MA, Zuloaga D, Velásquez CA, Carreño ML, Cardona OD, Barbat AH (2015a) Urban seismic risk index for Medellín, Colombia, based on probabilistic loss and casualties estimations. Nat Hazards. DOI: 10.1007/s11069-015-2056-4. (In press)Google Scholar
  87. Salgado-Gálvez MA, Cardona OD, Carreño ML, Barbat AH (2015b) Probabilistic seismic hazard and risk assessment in Spain. Monographs on earthquake engineering. CIMNE, Barcelona. doi:10.13140/2.1.3073.1049Google Scholar
  88. Satake K (1995) Linear and non-linear computations of the 1992 Nicaragua earthquake tsunami. Pure Appl Geophys 144:455–470ADSCrossRefGoogle Scholar
  89. Sørensen MB, Spada M, Babeyko A, Wiemer S, Grünthal G (2012) Probabilistic tsunami hazard in the Mediterranean Sea. J Geophys Res 117(B1):2156–2202. doi:10.1029/2010JB008169CrossRefGoogle Scholar
  90. Stein S, Okal EA (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582ADSCrossRefGoogle Scholar
  91. Stein S, Okal EA (2007) Ultralong period seismic study of the December 2004 Indian Ocean earthquake and implications for regional tectonics and the subduction process. Bull Seismol Soc Am 97(1A):S279–S295. doi:10.1785/0120050617CrossRefGoogle Scholar
  92. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett 81(6):941–950CrossRefGoogle Scholar
  93. Suppasri A, Imamura F, Koshimura S (2012) Probabilistic tsunami hazard analysis and risk to coastal populations in Thailand. J Earthq Tsunami 6(2). doi:10.1142/S179343111250011XGoogle Scholar
  94. Suppasri A, Mas E, Charvet I, Gunasekera R, Imai K, Fukutani Y, Abe Y, Imamura F (2013) Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Nat Hazards 66(2):319–341. doi:10.1007/s11069-012-0487-8CrossRefGoogle Scholar
  95. Synolakis CE, Bernard EN, Titov VV, Kânoglu U, Gonzaléz F (2007) Validation and verification of tsunami numerical models. Pure Appl Geophys 165:2197–2228ADSCrossRefGoogle Scholar
  96. Tadepalli S, Synolakis CE (1996) Model for the leading waves of tsunamis. Phys Rev Lett 77(10):2141–2144ADSCrossRefGoogle Scholar
  97. ten Brink U (2005) Vertical motions of the Puerto Rico Trench and Puerto Rico and their cause. J Geophys Res 110:B06404. doi:10.1029/2004JB003459ADSGoogle Scholar
  98. Thio HK, Somerville P, Polet J (2010) Probabilistic tsunami hazard in California, PEER report 2010/108 Pacific Earthquake Engineering Research CenterGoogle Scholar
  99. Tinti S, Armigliato A (2003) The use of scenarios to evaluate the tsunami impact in southern Italy. Mar Geol 199(3–4):221–243CrossRefGoogle Scholar
  100. Tinti S, Manucci A, Pagnoni G, Armigliato A, Zaniboni F (2005) The 30 December 2002 landslide-induced tsunamis in Stromboli: sequence of the events reconstructed from the eyewitness accounts. Nat Hazards Earth Syst Sci 5(6):763–775ADSCrossRefGoogle Scholar
  101. Titov VV, Gonzalez FI (1997) Implementation and testing of the Method of Splitting Tsunami (MOST) model. NOAA. Technical Memorandum ERL PMEL-112, 11 ppGoogle Scholar
  102. Titov VV, Rabinovich AB, Mofjeld HO, Thomson RE, Gonzalez FI (2005) The global reach of the 26 December 2004 Sumatra tsunami. Science 309(5743):2045–2048ADSCrossRefGoogle Scholar
  103. Tsunami Laboratory Novosibirsk, Historical Tsunami Database for the World Ocean (HTDB/WLD), http://tsun.sscc.ru/
  104. UN-ISDR (2015) GAR – global assessment report on disaster risk reduction – making development sustainable: the future of disaster risk management. Report. Available from www.preventionweb.net/gar/
  105. Venturato AJ, Arcas D, Kanoglu U (2007) Modeling tsunami inundation from a Cascadia subduction zone earthquake for long beach and Ocean Shores, Washington. NOAA technical memorandum OAR PMEL-137. U.S. Deptartment of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory, Seattle, pp 13Google Scholar
  106. Wang R, Martın FL, Roth F (2003) Computation of deformation induced by earthquakes in a multi-layered elastic crust – FORTRAN programs EDGRN/EDCMP. Comput Geosci 29(2):195–207ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Norwegian Geotechnical Institute (NGI)OsloNorway
  2. 2.Geoscience AustraliaCanberraAustralia
  3. 3.Centre Internacional de Metodes Numerics en Enginyeria (CIMNE)BarcelonaSpain