Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Earthquake: Magnitudes, Energy, and Moment

  • Peter Bormann
  • Domenico Di Giacomo
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_627-1

Definition of the Subject, Its Brief History and Importance

Besides earthquake location (i.e., the determination of the geographical coordinates of the epicenter, the hypocenter depth, and the origin time; see earthquake source in the Glossary), the magnitude is the most frequently determined and commonly used parameter to characterize the size of an earthquake. Despite various limitations, magnitudes also provide important information concerning the earthquake source spectrum at the frequencies where the magnitudes are measured (cf. Bormann et al. 2013; Bormann and Di Giacomo 2011) in relation to current source theories (cf. Aki 1967; Boore 1983; Brune 1970, 1971; Geller 1976; Haskell 1964a, b; Kanamori and Brodsky 2004) and may also be important in the discussion of various global problems such as the seismic slip rates between lithosphere plates.

Besides these more academic issues, earthquake magnitudes have an immense practical value in providing:
  1. (a)

    A simple way of providing a...

Keywords

Stress Drop Seismic Moment Seismic Energy Magnitude Scale Rupture Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. Abe K (1981) Magnitudes of large shallow earthquakes from 1904 to 1980. Phys Earth Planet Inter 27:72–92ADSCrossRefGoogle Scholar
  2. Abe K (1984) Complements to “Magnitudes of large shallow earthquakes from 1904 to 1980”. Phys Earth Planet Inter 34:17–23ADSCrossRefGoogle Scholar
  3. Abe K, Kanamori H (1980) Magnitudes of great shallow earthquakes from 1953 to 1977. Tectonophysics 62:191–203ADSCrossRefGoogle Scholar
  4. Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72(4):1217–1231ADSCrossRefGoogle Scholar
  5. Alsaker A, Kvamme LB, Hansen RA, Dahle A, Bungum H (1991) The ML scale in Norway. Bull Seismol Soc Am 81(2):379–389Google Scholar
  6. Baumbach M, Bormann P (2011) EX 3.4: Determination of source parameters from seismic spectra. In: Bormann P (ed) New manual of seismological observatory practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, Potsdam, 7 pp. doi:10.2312/GFZ.NMSOP-2_EX_3.4; http://nmsop.gfz-potsdam.de
  7. Bisztricsany E (1958) A new method for the determination of the magnitude of earthquake. Geofiz Kozl 7:69–96 (In Hungarian with English abstract)Google Scholar
  8. Boatwright J, Choy GL (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91(B2):2095–2112ADSCrossRefGoogle Scholar
  9. Bonner JL, Russell DR, Harkrider DG, Reiter DT, Hermann RB (2006) Development of a time-domain, variable-period surface wave magnitude measurement procedure for application at regional and teleseismic distances, part II: application and M S-m b performance. Bull Seism Soc Am 96(2):678–696. doi:10.1785/0120050056CrossRefGoogle Scholar
  10. Boore DM (1983) Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull Seismol Soc Am 83:1865–1894Google Scholar
  11. Bormann P (2012a) Magnitude calibration formulas and tables, comments on their use and complementary data. In: Bormann P (ed) New manual of seismological observatory practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, Potsdam, 20 pp. doi:10.2312/GFZ.NMSOP-2_DS_3.1; http://nmsop.gfz-potsdam.de
  12. Bormann P (ed) (2012b) New manual of seismological observatory practice (NMSOP-2). IASPEI, GFZ German Research Centre for Geosciences, Potsdam. doi:10.2312/GFZ.NMSOP-2; http://nmsop.gfz-potsdam.de
  13. Bormann P, Dewey JW (2012) The new IASPEI standards for determining magnitudes from digital data and their relation to classical magnitudes. In: Bormann P (ed) 44 pp. doi:10.2312/GFZ.NMSOP-2_IS_3.3; http://nmsop.gfz-potsdam.de
  14. Bormann P, Di Giacomo D (2011) The moment magnitude M w and the energy magnitude M e: common roots and differences. J Seismol 15:411–427. doi:10.1007/s10950-010-9219-2CrossRefGoogle Scholar
  15. Bormann P, Khalturin V (1975) Relations between different kinds of magnitude determinations and their regional variations. In: Proceedings of the XIVth General Assembly of the European Seismological Commission, Trieste, 16–22 Sept 1974. Academy of Sciences of DDR, Berlin, pp 27–39Google Scholar
  16. Bormann P, Wylegalla K (1975) Investigation of the correlation relationships between various kinds of magnitude determination at station Moxa depending on the type of instrument and on the source area (in German). Public Inst Geophys Polish Acad Sci 93:160–175Google Scholar
  17. Bormann P, Saul J (2008) The new IASPEI standard broadband magnitude m B. Seismol Res Lett 79(5):699–706CrossRefGoogle Scholar
  18. Bormann P, Saul J (2009a) Earthquake magnitude. In: Meyers A (ed) Encyclopedia of complexity and systems science, vol 3. Springer, Heidelberg, pp 2473–2496CrossRefGoogle Scholar
  19. Bormann P, Saul J (2009b) A fast, non-saturating magnitude estimator for great earthquakes. Seismol Res Lett 80(5):808–816. doi:10.1785/gssrl.80.5.808CrossRefGoogle Scholar
  20. Bormann P, Baumbach M, Bock G, Grosser H, Choy GL, Boatwright J (2002) Seismic sources and source parameters, Chapter 3. In: Bormann P (ed) (2012), 95 pp. http://nmsop.gfz-potsdam.de
  21. Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes, and recommendations for new IASPEI magnitude standards. Bull Seismol Soc Am 97(1B):114–127CrossRefGoogle Scholar
  22. Bormann P, Liu R, Xu Z, Ren K, Zhang L, Wendt S (2009) First application of the new IASPEI teleseismic magnitude standards to data of the China national seismographic network. Bull Seismol Soc Am 99(3):1868–1891. doi:10.1785/0120080010CrossRefGoogle Scholar
  23. Bormann P, Engdahl ER, Kind R (2012) Seismic waves and earth models, Chapter 2. In: Bormann P (ed) (2012), 105 pp. doi:10.2312/GFZ.NMSOP-2_ch2; http://nmsop.gfz-potsdam.de
  24. Bormann P, Di Giacomo D, Wendt S (2013). Seismic sources and source parameters, Chapter 3. In: Bormann P (ed) (2012), 259 pp. doi:10.2312/GFZ.NMSOP-2_ch3; http://nmsop.gfz-potsdam.de
  25. Braunmiller J, Kradolfer U, Baer M, Giardini D (2002) Regional moment tensor determinations in the European-Mediterranian area – initial results. Tectonophysics 356:5–22ADSCrossRefGoogle Scholar
  26. Brune JN (1970) Tectonic stress and the spectra of shear waves from earthquakes. J Geophys Res 75:4997–5009ADSCrossRefGoogle Scholar
  27. Brune JN (1971) Correction. J Geophys Res 76:5002CrossRefGoogle Scholar
  28. Brune JN, Engen GR (1969) Excitation of mantle Love waves and definition of mantle wave magnitude. Bull Seismol Soc Am 49:349–353Google Scholar
  29. Castellaro S, Bormann P (2007) Performance of different regression procedures on the magnitude conversion problem. Bull Seismol Soc Am 97:1167–1175CrossRefGoogle Scholar
  30. Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165:913–930ADSCrossRefGoogle Scholar
  31. Chen P, Chen H (1989) Scaling law and its applications to earthquake statistical relations. Tectonophysics 166:53–72ADSCrossRefGoogle Scholar
  32. Choy GL (2011) IS 3.5: Stress conditions inferable from modern magnitudes: development of a model of fault maturity. In: Bormann P (ed) (2012), 10 pp. doi:10.2312/GFZ.NMSOP-2_IS_3.5; http://nmsop.gfz-potsdam.de
  33. Choy GL (2012) Stress conditions inferable from modern magnitudes: development of a model of fault maturity. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–10. doi:http://doi.org/10.2312/GFZ.NMSOP-2_IS_3.5Google Scholar
  34. Choy GL, Boatwright J (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100(B9):18205–18228ADSCrossRefGoogle Scholar
  35. Choy GL, Kirby S (2004) Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys J Int 159:991–1012ADSCrossRefGoogle Scholar
  36. Choy GL, Boatwright J, Kirby SH (2001) The radiated seismic energy and apparent stress of interplate and intraslab earthquakes at subduction zone environments: implications for seismic hazard estimation. U.S. Geological Survey Open-File Report 01-0005, 18 ppGoogle Scholar
  37. Choy GL, Kirby S, Boatwright J (2006) An overview of the global variability in radiated energy and apparent stress. In: Abercrombie R et al (eds) Earthquakes: radiated energy and the physics of faulting, vol 170. Geophysical Monograph Series, pp 43–57CrossRefGoogle Scholar
  38. Coyne J, Bobrov D, Bormann P, Duran E, Grenard P, Haralabus G, Kitov I, Starovoit Y (2012) CTBTO – goals, networks, data analysis and data availability, Chapter 15. In: Bormann P (ed) (2012), 41 pp. doi:10.2312/GFZ.NMSOP-2_ch15; http://nmsop.gfz-potsdam.de
  39. Dahm T, Krüger F (2013) IS 3.9: Moment tensor inversion and moment tensor interpretation. In: Bormann P (ed) (2012), 33pp. http://nmsop.gfz-potsdam.de
  40. Di Giacomo D, Bormann P (2011) Earthquake energy. In: Gupta H (ed) Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 233–236. doi:10.1007/978-90-481-8702-7CrossRefGoogle Scholar
  41. Di Giacomo D, Grosser H, Parolai S, Bormann P, Wang R (2008) Rapid determination of Me for strong to great shallow earthquakes. Geophys Res Lett 35:L10308. doi:10.1929/2008GL033505CrossRefGoogle Scholar
  42. Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010) Suitability of rapid energy magnitude estimations for emergency response purposes. Geophys J Int 180:361–374. doi:10.1111/j.1365-246X.2009.04416.xADSCrossRefGoogle Scholar
  43. Di Giacomo D, Bondár I, Storchak DA, Engdahl ER, Bormann P, Harris J (2015) ISC-GEM: global instrumental earthquake catalogue (1900–2009): III. Re-computed M S and m b, proxy M W, final magnitude composition and completeness assessment. Phys Earth Planet Int 239:33–47. doi:10.1016/j.pepi.2014.06.005Google Scholar
  44. Duda SJ (1965) Secular seismic energy release in the circum-Pacific belt. Tectonophysics 2:409–452ADSCrossRefGoogle Scholar
  45. Dziewonski AM, Chou TA, Woodhous JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852ADSCrossRefGoogle Scholar
  46. Ekström G, Dziewonski AM (1988) Evidence of bias in estimations of earthquake size. Nature 332:319–323ADSCrossRefGoogle Scholar
  47. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9CrossRefGoogle Scholar
  48. Engdahl ER, Gunst RH (1966) Use of a high speed computer for the preliminary determination of earthquake hypocenters. Bull Seismol Soc Am 56:325–336Google Scholar
  49. Eshelby JD (1969) The elastic field of a crack extending non-uniformly under general anti-plane loading. J Mech Phys Solids 8:100–104Google Scholar
  50. Fleming K, Picozzi M, Milkereit C, Kühnlenz F, Lichtblau B, Fischer J, Zulfikar C, Özel O, The SAFER and EDIM Working Groups (2009) The self-organizing seismic early warning information network (SOSEWIN). Seismol Res Lett 80(5):755–771. doi:10.1785/gssrl.80.5.755CrossRefGoogle Scholar
  51. Fuller WA (1987) Measurement error models. Wiley, New York, 440 ppCrossRefzbMATHGoogle Scholar
  52. Gasparini P, Manfredi G, Zschau J (2007) Earthquake early warning systems. Springer, Berlin, 350 ppCrossRefGoogle Scholar
  53. Gasperini P, Lolli B, Vannucci G (2013) Body wave magnitude m b is a good proxy of moment magnitude M w for small earthquakes (m b < 4.5–5.0). Seismol Res Lett 84(8):932–937. doi:10.1785/0220130105CrossRefGoogle Scholar
  54. Geller RJ (1976) Scaling relations for earthquake source parameters and magnitudes. Bull Seismol Soc Am 66:1501–1523Google Scholar
  55. Geller RJ, Kanamori H (1977) Magnitudes of great shallow earthquakes from 1904 to 1952. Bull Seismol Soc Am 67:587–598Google Scholar
  56. Gordon DW (1971) Surface-wave versus body-wave magnitude. Earthq Notes 42(3/4):20–28Google Scholar
  57. Granville JP, Richards PG, Kim W-Y, Sykes LR (2005) Understanding the differences between three teleseismic m b scales. Bull Seismol Soc Am 95(5):1809–1824CrossRefGoogle Scholar
  58. Gutenberg B (1945a) Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bull Seismol Soc Am 35:57–69Google Scholar
  59. Gutenberg B (1945b) Magnitude determination of deep-focus earthquakes. Bull Seismol Soc Am 35:117–130Google Scholar
  60. Gutenberg B (1945c) Amplitude of surface waves and magnitude of shallow earthquakes. Bull Seismol Soc Am 35(3):3–12Google Scholar
  61. Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, PrincetonGoogle Scholar
  62. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15Google Scholar
  63. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350ADSCrossRefGoogle Scholar
  64. Hara T (2007a) Measurement of the duration of high-frequency energy radiation and its application to determination of the magnitudes of large shallow earthquakes. Earth Planets Space 59:227–231ADSCrossRefGoogle Scholar
  65. Hara T (2007b) Magnitude determination using duration of high frequency radiation and displacement amplitude: application to tsunami earthquakes. Earth Planets Space 59:561–565ADSCrossRefGoogle Scholar
  66. Haskell N (1964a) Total energy and energy spectral density of elastic wave radiation from propagating faults, 1. Bull Seismol Soc Am 54:1811–1842Google Scholar
  67. Haskell N (1964b) Total energy and energy spectral density of elastic wave radiation from propagating faults, 2. Bull Seismol Soc Am 56:125–140Google Scholar
  68. Hatzidimitriou P, Papazachos C, Kiratzi A, Theodulidis N (1993) Estimation of attenuation structure and local earthquake magnitude based on acceleration records in Greece. Tectonophysics 217:243–253ADSCrossRefGoogle Scholar
  69. Hayes GP, Rivera L, Kanamori H (2009) Source inversion of the W-phase: real-time implementation and extension to low magnitudes. Seim Res Lett 80(5):817–822. doi:10.1785/gssrl.80.5.817CrossRefGoogle Scholar
  70. Herak M, Herak D (1993) Distance dependence of M S and calibrating function for 20 second Rayleigh waves. Bull Seismol Soc Am 83:1881–1892Google Scholar
  71. Herak M, Panza GF, Costa G (2001) Theoretical and observed depth corrections for M s. Pure Appl Geophys 158:1517–1530ADSCrossRefGoogle Scholar
  72. Hirshorn B, Weinstein S (2009) Earthquake source parameters. In: Encyclopedia of complexity and systems science, Pt. 5. pp 2657–2676. doi:10.1007/978-0-387-30440-3_160CrossRefGoogle Scholar
  73. Houston H (1999) Slow ruptures, roaring tsunamis. Nature 400:409–410ADSCrossRefGoogle Scholar
  74. Houston H, Kanamori H (1986) Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion. Bull Seismol Soc Am 76(1):19–42Google Scholar
  75. Hunter RN (1972) Use of LPZ for magnitude. In: Taggart J (ed) NOAA technical report ERL 236-ESL21. U.S. Department of Commerce, BoulderGoogle Scholar
  76. Husseini MI (1977) Energy balance for formation along a fault. Geophys J R Astron Soc 49:699–714ADSCrossRefzbMATHGoogle Scholar
  77. Hutton LK, Boore DM (1987) The ML scale in Southern California. Bull Seismol Soc Am 77:2074–2094Google Scholar
  78. Hyvernaud O, Reymond D, Talandier J, Okal EA (1993) Four years of automated measurements of seismic moments at Papeete using the mantle magnitude Mm: 1987–1991. In: Duda SJ, Yanovskaya TB (eds) Special section: estimation of earthquake size. Elsevier Science. Tectonophysics 217:175–193Google Scholar
  79. IASPEI (2005) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data. http://www.iaspei.org/commissions/CSOI.htmlGoogle Scholar
  80. IASPEI (2013) Summary of magnitude working group recommendations on standard procedures for determining earthquake magnitudes from digital data. http://www.iaspei.org/commissions/CSOI/Summary_WG_recommendations_20130327.pdf
  81. Kanamori H (1972) The mechanism of tsunami earthquakes. Phys Earth Planet Interiors 6:346–359ADSCrossRefGoogle Scholar
  82. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987ADSCrossRefGoogle Scholar
  83. Kanamori H (1983) Magnitude scale and quantification of earthquakes. Tectonophysics 93:185–199ADSCrossRefGoogle Scholar
  84. Kanamori H (2001) Energy budget of earthquakes and seismic efficiency, Chapter 11. In: Teisseyre R, Majenski E (eds) Earthquake thermodynamics and phase transformations in the earth interior, vol 76, International geophysics series. Academic, San Diego, pp 293–305CrossRefGoogle Scholar
  85. Kanamori H (2006) The radiated energy of the 2004 Sumatra-Andaman earthquake. In: Abercrombie R, McGarr A, Kanamori H (eds) Radiated energy and the physics of earthquake faulting, vol 170, AGU geophysical monograph series. American Geophysical Union, Washington, DC, pp 59–68CrossRefGoogle Scholar
  86. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095Google Scholar
  87. Kanamori H, Brodsky EE (2004) The physics of earthquakes. Rep Prog Phys 67:1429–1496. doi:10.1088/0034-4885/67/8/R03MathSciNetADSCrossRefGoogle Scholar
  88. Kanamori H, Rivera L (2008) Source inversion of W phase: speeding up seismic tsunami warning. Geophys J Int 175:222–238ADSCrossRefGoogle Scholar
  89. Kanamori H, Mori J, Hauksson E, Heaton ThH, Hutton LK, Jones LM (1993) Determination of earthquake energy release and ML using TERRASCOPE. Bull Seism Soc Am 83(2):330–346Google Scholar
  90. Katsumata M (1964) A method of determination of magnitude for near and deep-focus earthquakes (in Japanese with English abstract). A J Seismol 22:173–177Google Scholar
  91. Katsumata M (1996) Comparison of magnitudes estimated by the Japan Meteorological Agency with moment magnitudes for intermediate and deep earthquakes. Bull Seismol Soc Am 86:832–842Google Scholar
  92. Kikuchi M, Ishida M (1993) Source retrieval for deep local earthquakes with broadband records. Bull Seismol Soc Am 83:1855–1870Google Scholar
  93. Kikuchi M, Kanamori H (1995) Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl Geophys 1(44):441–453ADSCrossRefGoogle Scholar
  94. Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. J Appl Math Mech (Engl trans) 30:1241–1248CrossRefGoogle Scholar
  95. Lee WHK, Wu YM (2009) Earthquake monitoring and early warning systems. In: Meyers A (ed) Encyclopedia of complexity and systems science, vol 3. Springer, Heidelberg, pp 2496–2530CrossRefGoogle Scholar
  96. Lee WHK, Meyers H, Shimazaki K (eds) (1988) Historical seismograms and earthquakes of the world. Academic, San Diego, 513 ppGoogle Scholar
  97. Lee V, Trifunac M, Herak M, Živčić M, Herak D (1990) ML SM computed from strong motion accelerograms recorded in Yugoslavia. Earthq Eng Struct Dyn 19:1167–1179CrossRefGoogle Scholar
  98. Lienkaemper JJ (1984) Comparison of two surface-wave magnitude scales: M of Gutenberg and Richter (1954) and Ms of “Preliminary Determination of Epicenters”. Bull Seismol Soc Am 74(6):2357–2378Google Scholar
  99. Lolli B, Gasperini P, Vannucci G (2014) Empirical conversion between teleseismic magnitudes (m b and M S) and moment magnitude (Mw) at the global, Euro-Mediterranean and Italian scale. Geophys J Int 199(2):805–828. doi:10.1093/gji/ggu264Google Scholar
  100. Lomax A, Michelini A (2009a) M wpd: a duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophys J Int 176:200–214. doi:10.1111/j.1365-246X.2008.03974.xADSCrossRefGoogle Scholar
  101. Lomax A, Michelini A (2009b) Tsunami early warning using earthquake rupture duration. Geophys Res Lett 36:L09306. doi:10.1029/2009GL037223ADSCrossRefGoogle Scholar
  102. Lomax A, Michelini A (2011) Tsunami early warning using earthquake rupture duration and P-wave dominant period: the importance of length and depth of faulting. Geophys J Int 185(1):283–291. doi:10.1111/j.1365-246X.2010.04916.xADSCrossRefGoogle Scholar
  103. Lomax A, Michelini A (2012) Tsunami early warning within five minutes. Pure Appl Geophys 169:nnn–nnn. doi:10.1007/s00024-012-0512-6Google Scholar
  104. Lomax A, Michelini A, Piatanesi A (2007) An energy-duration procedure for rapid and accurate determination of earthquake magnitude and tsunamigenic potential. Geophys J Int 170:1195–1209ADSCrossRefGoogle Scholar
  105. Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666Google Scholar
  106. Margaris BN, Papazachos CB (1999) Moment-magnitude relations based on strong-motion records in Greece. Bull Seismol Soc Am 89:442–455Google Scholar
  107. McGarr A, Fletcher JB (2002) Mapping apparent stress and energy radiation over fault zones of major earthquakes. Bull Seismol Soc Am 92:1633–1646CrossRefGoogle Scholar
  108. Mendez AJ, Anderson JG (1991) The temporal and spatial evolution of the 19 September 1985 Michoacan earthquake as inferred from near-source ground-motion records. Bull Seismol Soc Am 81:1655–1673Google Scholar
  109. Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M o discriminant for tsunami earthquakes. J Geophys Res 103:26,885–26,897ADSCrossRefGoogle Scholar
  110. Nuttli OW (1986) Yield estimates of Nevada Test Site explosions obtained from seismic Lg waves. J Geophys Res 91:2137–2151ADSCrossRefGoogle Scholar
  111. Okal EA (1989) A theoretical discussion of time domain magnitudes: the Prague formula for Ms and the mantle magnitude Mm. J Geophys Res 94:4194–4204ADSCrossRefGoogle Scholar
  112. Okal EA, Talandier J (1989) Mm: a variable-period mantle magnitude. J Geophys Res 94:4169–4193ADSCrossRefGoogle Scholar
  113. Okal EA, Talandier J (1990) Mm: extension to Love waves of the concept of a variable-period mantle magnitude. Pure Appl Geophys 134:355–384ADSCrossRefGoogle Scholar
  114. Olson EL, Allen R (2005) The deterministic nature of earthquake rupture. Nature 438:212–215ADSCrossRefGoogle Scholar
  115. Oth A, Bindi D, Parolai S, Di Giacomo D (2010) Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: insights from KiK-net data in Japan. Geophys Res Lett 37:L19304. doi:10.1029/2010GL044572ADSCrossRefGoogle Scholar
  116. Pérez-Campos X, Beroza GC (2001) An apparent mechanism dependence of radiated seismic energy. J Geophys Res 106(B6):11127–11136ADSCrossRefGoogle Scholar
  117. Polet J, Kanamori H (2000) Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys J Int 142:684–702ADSCrossRefGoogle Scholar
  118. Polet J, Kanamori H (2009) Tsunami earthquakes. In: Meyers R (ed) Encyclopedia of complexity and systems science, vol 10. Springer, Heidelberg, pp 9577–9592CrossRefGoogle Scholar
  119. Purcaru G, Berckhemer H (1982) Quantitative relations of seismic source parameters and a classification of earthquakes. Tectonophysics 84:57–128ADSCrossRefGoogle Scholar
  120. Rezapour M, Pearce RG (1998) Bias in surface-wave magnitude MS due to inadequate distance corrections. Bull Seismol Soc Am 88:43–61Google Scholar
  121. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25:1–32Google Scholar
  122. Rydelek P, Horiuchi S (2006) Is earthquake rupture deterministic? Nature 444:E5–E6CrossRefGoogle Scholar
  123. Sadovsky MA, Kedrov OK, Pasechnik IP (1986) On the question of energetic classification of earthquakes (in Russian). Fizika Zemli 2:3–10Google Scholar
  124. Saul J, Bormann P (2007) Rapid estimation of earthquake size using the broadband P-wave magnitude mB. In: Eos, transactions, American Geophysical Union, AGU 2007 fall meeting, 88(52), Suppl, Abstract S53A–1035Google Scholar
  125. Schweitzer J, Kværna T (1999) Influence of source radiation patterns on globally observed short-period magnitude estimates (mb). Bull Seismol Soc Am 89(2):342–347Google Scholar
  126. Seidl D, Berckhemer H (1982) Determination of source moment and radiated seismic energy from broadband recordings. Phys Earth Planet Inter 30:209–213ADSCrossRefGoogle Scholar
  127. Soloviev SL (1955) Classification of earthquakes by energy value (in Russian). Trudy Geophys Inst Acad Sci USSR 39(157):3–31Google Scholar
  128. Stein S, Okal E (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582ADSCrossRefGoogle Scholar
  129. Storchak DA, Di Giacomo D, Bondár I, Engdahl ER, Harris J, Lee WHK, Villaseñor A, Bormann P (2013) Public release of the ISC-GEM Global Instrumental earthquake catalogue (1900–2009). Seismol Res Lett 84(5):810–815CrossRefGoogle Scholar
  130. Stromeyer D, Grünthal G, Wahlström R (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with application to an Mw based earthquake catalogue for central and northwestern Europe. J Seismol 8(1):143–153CrossRefGoogle Scholar
  131. Talandier J, Okal EA (1992) One-station estimates of seismic moments from the mantle magnitude Mm: the case of the regional field (1.5° ≤ Δ ≤ 15°). Pure Appl Geophys 138:43–60ADSCrossRefGoogle Scholar
  132. Tsai VC, Nettles M, Ekström G, Dziewonski AM (2005) Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett 32(L17304):1–4Google Scholar
  133. Tsuboi C (1954) Determination of the Gutenberg-Richter’s magnitude of earthquakes occurring in and near Japan (in Japanese with English abstract). Zisin, Second Series 7:185–193Google Scholar
  134. Tsuboi S, Abe K, Takano K, Yamanaka Y (1995) Rapid determination of Mw from broadband P waveforms. Bull Seismol Soc Am 85:606–613Google Scholar
  135. Tsuboi S, Whitmore PM, Sokolovski TJ (1999) Application of Mwp to deep and teleseismic earthquakes. Bull Seismol Soc Am 89:1345–1351Google Scholar
  136. Uhrhammer RA, Collins ER (1990) Synthesis of Wood-Anderson seismograms from broadband digital records. Bull Seismol Soc Am 80:702–716Google Scholar
  137. Uhrhammer RA, Hellweg M, Hutton K, Lombard P, Walters AW, Hauksson E, Oppenheimer D (2011) California Integrated Seismic Network (CISN) local magnitude determination in California and vicinity. Bull Seismol Soc Am 101:2685–2693CrossRefGoogle Scholar
  138. Utsu T (2002) Relationships between magnitude scales. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology, part A. Academic, Amsterdam, pp 733–746CrossRefGoogle Scholar
  139. Vanĕk J, Zapotek A, Karnik V, Kondorskaya NV, Riznichenko YV, Savarensky EF, Solov’yov SL, Shebalin NV (1962) Standadizaciya shkaly magnitude (in Russian). Izvestiya Akad SSSR, Ser Geofiz 2:153–158 (with English translation in 1962 by D. G. Frey, published in Izv Geophys Ser)Google Scholar
  140. Venkataraman A, Kanamori H (2004) Effect of directivity on estimates of radiated seismic energy. J Geophys Res 109:B04301. doi:10.1029/2003JB002548ADSGoogle Scholar
  141. Wahlström R, Strauch W (1984) A regional magnitude scale for Central Europe based on crustal wave attenuation. Seismological Department, University of Uppsala, Report No. 3–84, 16 ppGoogle Scholar
  142. Weinstein S, Okal E (2005) The mantle magnitude Mm and the slowness parameter Θ: five years of real-time use in the context of tsunami warning. Bull Seismol Soc Am 95:779–799CrossRefGoogle Scholar
  143. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  144. Whitmore PM, Tsuboi S, Hirshorn B, Sokolowski TJ (2002) Magnitude-dependent correction for Mwp. Sci Tsunami Haz 20(4):187–192Google Scholar
  145. Willmore PL (ed) (1979) Manual of seismological observatory practice, Report SE-20. World Data Center A for Solid Earth Geophysics, BoulderGoogle Scholar
  146. Wu KM, Kanamori H (2005) Experiment on an onsite early warning method for the Taiwan early warning system. Bull Seismol Soc Am 95:347–353CrossRefGoogle Scholar
  147. Wyss M, Brune JN (1968) Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada regions. J Geophys Res 73:4681–4694ADSCrossRefGoogle Scholar

Books and Reviews

  1. Das S, Kostrov BV (1988) Principles of earthquake source mechanics. Cambridge University Press, CambridgeGoogle Scholar
  2. Duda S, Aki K (1983) Quantification of earthquakes. Tectonophysics 93(Special issue 3–4):183–356Google Scholar
  3. Lay T, Wallace TC (1995) Modern global seismology. Academic, San DiegoGoogle Scholar
  4. Richter CF (1958) Elementary seismology. W. H. Freeman, San FranciscoGoogle Scholar
  5. Scholz CH (2002) The mechanics of earthquake faulting, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Stein S, Wysession M (2002) Introduction to seismology, earthquakes and earth structure. Blackwell, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Formerly Helmholtz Center PotsdamGerman Research Center for Geosciences (GFZ)PotsdamGermany
  2. 2.International Seismological Centre (ISC)ThatchamUK