Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Digital Communication and Chemical Structure Codification

  • Stephen J. Barigye
  • Yovani Marrero-Ponce
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-3-642-27737-5_625-2

Definition of the Subject

The representation of structural properties of chemical systems into some sort of “syntax” or numeric language comprehensible to computers plays a central role in a wide range of fields such as computational chemistry, drug discovery, virtual screening, similarity/dissimilarity studies, complex networks, QSAR/QSPR, etc. These numeric representations of chemical systems carry a general denomination of descriptors (or indices). Several approaches derived (or motivated) from paradigms of different disciplines have been applied in chemical structural codification, and these range from algebraic topology, quantum chemistry, discrete physics, organic chemistry, and, certainly, digital communication, among others. The justification for this trend is simply because chemical systems are just like an orchestral set piece in that their adequate characterization requires contributions from different perspectives. Definitely, space does not suffice to offer a general...


Mutual Information Conditional Entropy Joint Entropy Participation Frequency Source Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Anderson JB, Mohan S (1991) Source and channel coding: an algorithmic approach. Kluwer, NorwellCrossRefzbMATHGoogle Scholar
  2. Balaban A, Ivanciuc O (2000) Historical development of topological indices. In: Topological indices and related descriptors in QSAR and QSPAR. Gordon and Breach Science Publishers, Singapore, pp 21–57Google Scholar
  3. Barigye SJ, Marrero-Ponce Y, Martínez-Santiago O, Martínez-López Y, Torrens F (2013a) Shannon’s, mutual, conditional and joint entropy-based information indices. Generalization of molecular descriptors defined from LOVIs. Curr Comput Aided Drug Des 9:164–183CrossRefGoogle Scholar
  4. Barigye SJ, Marrero-Ponce Y, López YM, Santiago OM, Torrens F, Domenech RG, Galvez J (2013b) Event-based criteria in GT-STAF information indices: theory, exploratory diversity analysis and QSPR applications. SAR QSAR Environ Res 24:3–34CrossRefGoogle Scholar
  5. Barigye SJ, Marrero-Ponce Y, Martínez-López Y, Torrens F, Artiles-Martínez LM, Pino-Urias RW, Martínez-Santiago O (2013c) Relations frequency hypermatrices in mutual, conditional and joint entropy-based information indices. J Comput Chem 34:259–274CrossRefGoogle Scholar
  6. Barigye SJ, Marrero-Ponce Y, Alfonso-Reguera V, Pérez-Giménez F (2013d) Extended GT-STAF information indices based on Markov approximation models. Chem Phys Lett 570:147–152ADSCrossRefGoogle Scholar
  7. Barigye SJ, Marrero-Ponce Y, Pérez-Giménez F, Bonchev D (2014) Trends in information theory-based chemical structure codification. Mol Divers 18:673–686CrossRefGoogle Scholar
  8. Basak SC, Magnuson V, Niemi G, Regal R, Veith G (1987) Topological indices: their nature, mutual relatedness, and applications. Math Model 8:300–305MathSciNetCrossRefGoogle Scholar
  9. Beauregard OC, Tribus M (2002) Information theory and thermodynamics. In: Leff H, Re AF (eds) Maxwell’s demon 2 entropy, classical and quantum information, computing. Institute of Physics Publishing, Bristol, pp 137–145Google Scholar
  10. Beno BR, Mason JS (2001) The design of combinatorial libraries using properties and 3D pharmacophore fingerprints. Drug Discov Today 6(5):251–258CrossRefGoogle Scholar
  11. Blahut RE (1987) Principles and practice of information theory. Addison-Wesley, ReadingzbMATHGoogle Scholar
  12. Bonchev D (1983) Information theoretic indices for characterization of chemical structures. Research Studies Press, ChichesterGoogle Scholar
  13. Bonchev D (2005) My life–long journey in mathematical chemistry. Internet Electron J Mol Des 4:434–490Google Scholar
  14. Bonchev D (2009) Information theoretic measures of complexity. In: Meyers R (ed) Encyclopedia of complexity and system science, vol 5. Springer, Heidelberg, pp 4820–4838CrossRefGoogle Scholar
  15. Bonchev D, Trinajstic N (1977) Information theory, distance matrix, and molecular branching. J Chem Phys 38:4517–4533ADSCrossRefGoogle Scholar
  16. Bremm S, von Landesberger T, Bernard J, Schreck T (2011) Assisted Descriptor Selection Based on Visual Comparative Data Analysis. Comput Graph Forum, 30(3):891–900. doi: 10.1111/j.1467-8659.2011.01938.xGoogle Scholar
  17. Chizhik D, Ling J, Wolniansky PW, Valenzuela RA, Costa N, Huber K (2003) Multiple-input-multiple-output measurements and modeling in Manhattan. IEEE J Sel Areas Commun 21(3):321–331CrossRefGoogle Scholar
  18. Contrera JF, MacLaughlin P, Hall LH, Kier LB (2005) QSAR modeling of carcinogenic risk using discriminant analysis and topological molecular descriptors. Curr Drug Discov Technol 2(2):55–67CrossRefGoogle Scholar
  19. Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley, HobokenzbMATHGoogle Scholar
  20. Csiszar I, Körner J (2011) Information theory: coding theorems for discrete memoryless systems, 2nd edn. Cambridge University Press, Cambridge, UKCrossRefzbMATHGoogle Scholar
  21. Dancoff SM, Quastler H (1953) The information content and error rate of living things. In: Quastler H (ed) Essays on the use of information theory in biology. University of Illinois Press, Urbana, pp 263–273Google Scholar
  22. Dehmer M, Mowshowitz A (2011) A history of graph entropy measures. Inform Sci 181:57–78MathSciNetCrossRefzbMATHGoogle Scholar
  23. Deng Z, Chuaqui C, Singh J (2003) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein–ligand binding interactions. J Med Chem 47(2):337–344CrossRefGoogle Scholar
  24. Diudea MV, Gutman I, Jantschi L (2001) Molecular topology. Nova, HuntingtonGoogle Scholar
  25. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12(5):225–233CrossRefGoogle Scholar
  26. Estrada E (1995) Edge adjacency relationships in molecular graphs containing heteroatoms: a new topological index related to molar volume. J Chem Inf Comput Sci 35:701–707CrossRefGoogle Scholar
  27. Estrada E (1997) Spectral moments of the edge-adjacency matrix of molecular graphs. 2. Molecules containing heteroatoms and QSAR applications. J Chem Inf Comput Sci 37:320–328CrossRefGoogle Scholar
  28. Estrada E (1999) Edge-connectivity indices in QSPR/QSAR studies. 2. Accounting for long-range bond contributions. J Chem Inf Comput Sci 39:1042–1048CrossRefGoogle Scholar
  29. Estrada E (2001) Generalization of topological indices. Chem Phys Lett 336:248–252ADSCrossRefGoogle Scholar
  30. Estrada E, Gutman I (1996) A topological index based on distances of edges of molecular graphs. J Chem Inf Comput Sci 36:850–853CrossRefGoogle Scholar
  31. Estrada E, Molina E (2001) Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design. J Mol Graph Model 20(1):54–64CrossRefGoogle Scholar
  32. Estrada E, Ramirez A (1996) Edge adjacency relationships and molecular topographic descriptors. Definition and QSAR applications. J Chem Inf Comput Sci 36:837–843CrossRefGoogle Scholar
  33. Estrada E, Guevara N, Gutman I (1998) Extension of edge connectivity index. Relationships to line graph indices and QSPR applications. J Chem Inf Comput Sci 38:428–431CrossRefGoogle Scholar
  34. Forsythe K, Bliss D, Fawcett G (2004) Multiple-input multiple-output (MIMO) radar: performance issues. In: Signals, systems and computers, 2004. Conference record of the thirty-eighth Asilomar conference on. IEEE. Pacific Grove, California, pp 310–315Google Scholar
  35. Gallager RG (2008) Principles of digital communication, vol 1. Cambridge University Press, Cambridge, UKCrossRefzbMATHGoogle Scholar
  36. Gálvez J, Gálvez-Llompart M, García-Domenech R (2012) Molecular topology as a novel approach for drug discovery. Expert Opin Drug Discov 7(2):133–153CrossRefGoogle Scholar
  37. García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L (2008) Some new trends in chemical graph theory. Chem Rev 108(3):1127–1169CrossRefGoogle Scholar
  38. Garcia-Jacas C, Marrero-Ponce Y, Barigye S, Valdes-Martini J, Rivera-Borroto O, Olivero-Verbel J (2014) N-linear algebraic maps for chemical structure codification: a suitable generalization for atom-pair approaches? Curr Drug Metab 15:1–29CrossRefGoogle Scholar
  39. Gerstl Z, Helling CS (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. J Environ Sci Health B 22(1):55–69CrossRefGoogle Scholar
  40. Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27(1):21–35CrossRefGoogle Scholar
  41. Gray RM (2011) Entropy and information theory, vol 1. Springer, New YorkCrossRefzbMATHGoogle Scholar
  42. Greiner W, Neise L, Stöcker H (1995) Thermodynamics and statistical mechanics. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  43. Gutman I (2003) Impact of the Sachs theorem on theoretical chemistry: a participant’s testimony. MATCH Commun Math Comput Chem 48:17–34zbMATHGoogle Scholar
  44. Hall LH, Kier LB (1978) Molecular connectivity and substructure analysis. J Pharm Sci 67:1743–1747CrossRefGoogle Scholar
  45. Hamming RW (1986) Coding and information theory, 2nd edn. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  46. Hiemstra D (2001) Using language models for information retrieval. Taaluitgeverij Neslia Paniculata, EnschedeGoogle Scholar
  47. Howard S, Wallace M, Walton J (2009) Multiple-access multiple-input multiple-output (MIMO) communication system. Application. Google Patents, U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  48. Ivanciuc O, Ivanciuc T, Balaban AT (1999) Vertex- and edge-weighted molecular graphs and derived structural descriptors. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam, pp 169–220Google Scholar
  49. Janežič D, Miličević A, Nikolić S, Trinajstić N (2007) Graph theoretical matrices in chemistry. Mathematical chemistry monographs. CRC Press, Boca Raton, FLGoogle Scholar
  50. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 108:171ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. Jones DS (1979) Elementary information theory. Clarendon, OxfordzbMATHGoogle Scholar
  52. Kier LB, Hall L (1999a) The electrotopological state: structure modeling for QSAR and data base analysis. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Amsterdam, pp 491–562Google Scholar
  53. Kier LB, Hall LH (1999b) Molecular structure description. The electrotopological state. Academic, San DiegoGoogle Scholar
  54. Klein DJ, Palacios JL, Randic M, Trinajstic N (2004) Random walks and chemical graph theory. J Chem Inf Comput Sci 44(5):1521–1525CrossRefGoogle Scholar
  55. Lin S, Costello DJ Jr (1983) Error control coding: fundamentals and applications. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  56. Livingstone DJ (2000) The characterization of chemical structures using molecular properties. A survey. J Chem Inf Comput Sci 40(2):195–209CrossRefGoogle Scholar
  57. Lucky RW, Lucky R (1989) Silicon dreams: information, man, and machine. St. Martin’s Press, New YorkGoogle Scholar
  58. MACCS Drug Data Report, Release 2000.2, MDL Information Systems, Inc., 14600 Catalina Street, San Leandro, CA 94577, 2000Google Scholar
  59. Mandelbrot BB (1968) Information theory and psycholinguistics: a theory of word frequencies. In: Lazarsfeld PF, Henry NW (eds) Readings in mathematical social science, vol 98. The MIT Press, Cambridge, MA, pp 350–368Google Scholar
  60. Mannhold R, Kubinyi H, Folkers G, Langer T, Hoffmann RD (2006) Pharmacophores and pharmacophore searches. Wiley, WeinheimGoogle Scholar
  61. Manning CD, Schütze H (1999) Foundations of statistical natural language processing. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  62. Matter H, Pötter T (1999) Comparing 3D pharmacophore triplets and 2D fingerprints for selecting diverse compound subsets. J Chem Inf Comput Sci 39(6):1211–1225CrossRefGoogle Scholar
  63. Morse SFB (1914) Samuel FB Morse: his letters and journals, vol 2. Houghton Mifflin Company, BostonGoogle Scholar
  64. Oakman C, Tenori L, Biganzoli L, Santarpia L, Cappadona S, Luchinat C, Di Leo A (2011) Uncovering the metabolomic fingerprint of breast cancer. Int J Biochem Cell Biol 43(7):1010–1020CrossRefGoogle Scholar
  65. Oslin GP (1992) The story of telecommunications. Mercer University Press, MaconGoogle Scholar
  66. Paolo T, Stiefl N, Landrum G (2014) The integration of Open3DTOOLS into the RDKit and KNIME. J. Cheminformatics 6(Suppl 1):P8Google Scholar
  67. Pogliani L (2000) From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors. Chem Rev 100(10):3827–3858CrossRefGoogle Scholar
  68. Pozzan A (2006) Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery. Curr Pharm Des 12(17):2099–2110CrossRefGoogle Scholar
  69. Randić M (1991) Generalized molecular descriptors. J Math Chem 7(1):155–168ADSCrossRefGoogle Scholar
  70. Randić M, Trinajstić N (1993) In search for graph invariants of chemical interest. J Mol Struct 300:551–571ADSCrossRefGoogle Scholar
  71. Randic M, Woodworth WL, Graovac A (1983) Unusual random walks. Int J Quantum Chem 24(5):435–452CrossRefGoogle Scholar
  72. Rose DJ (1972) A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Graph theory and computing. Academic Press, New York, pp 183–217Google Scholar
  73. Roth MA, Van Horn SJ (1993) Database compression. ACM Sigmod Rec 22(3):31–39CrossRefGoogle Scholar
  74. Roy K, Pal DK, De A, Sengupta C (1999) Comparative QSAR studies with molecular negentropy, molecular connectivity, STIMS and TAU indices: part I-tadpole narcosis of diverse functional acyclic compounds. Indian J Chem B 38(6):664–671Google Scholar
  75. Roy K, Pal D, De A, Sengupta C (2001) Comparative QSAR studies with molecular negentropy, molecular connectivity, STIMS and TAU indices: part II-general anaesthetic activity of aliphatic hydrocarbons, halocarbons and ethers. Indian J Chem B 40(2):129–135Google Scholar
  76. Ruecker G, Ruecker C (1993) Counts of all walks as atomic and molecular descriptors. J Chem Inf Comput Sci 33(5):683–695CrossRefGoogle Scholar
  77. Sachs H (1964) Beziehungen zwischen den in einem graphen enthaltenen Kreisen und seinem characteristischen Polynom. Publ Math 11:119–134MathSciNetzbMATHGoogle Scholar
  78. Senese CL, Duca J, Pan D, Hopfinger AJ, Tseng YJ (2004) 4D-fingerprints, universal QSAR and QSPR descriptors. J Chem Inf Comput Sci 44(5):1526–1539CrossRefGoogle Scholar
  79. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–656MathSciNetCrossRefzbMATHGoogle Scholar
  80. Shannon CE (1949) Communication theory of secrecy systems. Bell Syst Tech J 28(4):656–715MathSciNetCrossRefzbMATHGoogle Scholar
  81. Shannon CE (1956) The bandwagon. IRE Trans Inf Theory 2(1):3CrossRefGoogle Scholar
  82. Shcherbina O (2009) Graph-based local elimination algorithms in discrete optimization. In: Foundations of computational intelligence, vol 3. Springer, Heidelberg, pp 235–266Google Scholar
  83. Singh S (2000) The code book: the science of secrecy from ancient Egypt to quantum cryptography. Anchor Books, New YorkGoogle Scholar
  84. Steinbeck C, Han YQ, Kuhn S, Horlacher O, Luttmann E, Willighagen EL (2003) The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43(2):493–500CrossRefGoogle Scholar
  85. Theil H (1967) Economics and information theory. North Holland Publishing Company, AmsterdamGoogle Scholar
  86. Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, vol 1, 1st edn. WILEY-VCH, WeinheimCrossRefGoogle Scholar
  87. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11(23):1046–1053CrossRefGoogle Scholar
  88. Willett P (2011) Similarity searching using 2D structural fingerprints. In: Chemoinformatics and computational chemical biology. Humana Press, New York, pp 133–158Google Scholar
  89. Xue L, Bajorath J (2000) Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 3(5):363–372CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of ChemistryFederal University of LavrasLavrasBrazil
  2. 2.Universidad San Francisco de Quito (USFQ), Escuela de Medicina, CumbayáQuitoEcuador