Skip to main content

Nonlinear Water Waves and Nonlinear Evolution Equations with Applications

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

True Laws of Nature cannot be linear.

Albert Einstein

… the progress of physics will to a large extent depend on the progress of nonlinear mathematics, of methods to solve nonlinear equations … and therefore we can learn by comparing different nonlinear problems.

Werner Heisenberg

… as Sir Cyril Hinshelwood has observed… fluid dynamics were divided into hydraulic engineers who observed things that could not be explained and mathematicians who explained things that could not be observed.

James Lighthill

Introduction

Water waves are the most common observable phenomena in nature. The subject of water waves is most fascinating and highly mathematical and verified of all areas in the study of wave motions in the physical world. The mathematical as well as physical problems deal with water waves and their breaking on beaches, with flood waves in rivers, with ocean waves from storms, with ship waves on water, and with free oscillations of enclosed waters such as lakes and harbors. The study...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Akylas TR (1984a) On the excitation of nonlinear water waves by a moving pressure distribution. J Fluid Mech 141:455–466

    MathSciNet  MATH  ADS  Google Scholar 

  • Akylas TR (1984b) On the excitation of nonlinear water waves by a moving pressure distribution oscillating at resonant frequency. Phys Fluids 27:2803–2807

    MathSciNet  MATH  ADS  Google Scholar 

  • Akylas TR (1987) Unsteady and nonlinear effects near the cusp lines of the Kelvin ship-wave patterns. J Fluid Mech 175:333–342

    MATH  ADS  Google Scholar 

  • Akylas TR (1989) Higher-order modulation effects on solitary envelopes in deep water. J Fluid Mech 198:387–397

    MathSciNet  MATH  ADS  Google Scholar 

  • Akylas TR (1991) Higher-order modulation effects on solitary envelopes in deep water, part 2. Multi-soliton envelopes. J Fluid Mech 224:417–428

    MathSciNet  MATH  ADS  Google Scholar 

  • Akylas TR, Dias F, Grimshaw R (1998) The effects of the induced mean flow on solitary waves in deep water. J Fluid Mech 355:317–328

    MathSciNet  MATH  ADS  Google Scholar 

  • Aranha JA, Yue DKP, Mei CC (1982) Nonlinear waves near a cut-off frequency in an acoustic duct-a numerical study. J Fluid Mech 121:465–478

    MATH  ADS  Google Scholar 

  • Barnard BJS, Mahony JJ, Pritchard WG (1977) The excitation of surface waves near a cut-off frequency. Philos Trans R Soc Lond A286:87–103

    MathSciNet  ADS  Google Scholar 

  • Benjamin TB (1962) The solitary wave on a stream with arbitrary distribution of vorticity. J Fluid Mech 12:97–116

    MathSciNet  MATH  ADS  Google Scholar 

  • Benjamin TB, Feir JB (1967) The disintegration of wavetrains on deep water, part-1, theory. J Fluid Mech 27:417–430

    MATH  ADS  Google Scholar 

  • Benjamin TB, Olver PJ (1982) Hamiltonian structure, symmetrics and conservational laws for water waves. J Fluid Mech 125:137–185

    MathSciNet  MATH  ADS  Google Scholar 

  • Bressan A, Constantin A (2007) Global conservative solutions of the Camassa-Holm equation. Arch Ration Mech Anal 183:215–239

    MathSciNet  MATH  Google Scholar 

  • Caffarelli L, Kohn R, Nirenberg L (1982) Partial regularity of suitable weak solutions of the Navier–Stokes equations. Commun Pure Appl Math 35:771–831

    MathSciNet  MATH  ADS  Google Scholar 

  • Camassa R, Holm DD (1993) Hamiltonian structure, symmetrics and conservational laws for water waves. J Fluid Mech 125:1661–1664

    MathSciNet  Google Scholar 

  • Camassa R, Holm DD, Hyman JM (1994) A new integrable shallow water equation. Adv Appl Mech 31:1–33

    Google Scholar 

  • Cherkesov LV (1962) The development of surface waves excited by a periodic pressure. Sov Phys Dokl 4:776–785

    ADS  Google Scholar 

  • Constantin A, Escher J (1998a) Wave breaking for nonlinear nonlocal shallow water equations. Acta Math 181:229–243

    MathSciNet  MATH  Google Scholar 

  • Constantin A, Escher J (1998b) Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun Pure Appl Math 51:475–504

    MathSciNet  MATH  Google Scholar 

  • Constantin A, Escher J (1998c) On the structure of family of quasilinear equations arising in shallow water theory. Math Ann 312:403–416

    MathSciNet  MATH  Google Scholar 

  • Constantin A, Lannes D (2009) The hydrodynamical relevance of the Camassa-Holm and Degaperis-Procesi Equation. Arch Ration Mech Anal 192:165–186

    MathSciNet  MATH  Google Scholar 

  • Constantin A, McKean HP (1999) A shallow water equation on the circle. Commun Pure Appl Math 52(8):949–982

    MathSciNet  Google Scholar 

  • Constantin A, Strauss W (2000) Stability of peakons. Commun Pure Appl Math 53:603–610

    MathSciNet  MATH  Google Scholar 

  • Dagan G (1975) Waves and wave resistance of their bodies moving at low speed: the free surface nonlinear effect. J Fluid Mech 69:405–416

    MathSciNet  MATH  ADS  Google Scholar 

  • Dagan G, Miloh T (1982) Free-surface flow past oscillating singularities at resonant frequency. J Fluid Mech 120:139–156

    MATH  ADS  Google Scholar 

  • Davey A, Stewartson K (1974) On three dimensional packets of surface waves. Proc R Soc Lond A338:101–110

    MathSciNet  ADS  Google Scholar 

  • Debnath L (1977) Generation or dispersive waves in magnetohydrodynamics. Plasma Phys 19:263–275

    ADS  Google Scholar 

  • Debnath L (1983) Nonlinear dynamics of water waves and the nonlinear Schrödinger equation. Diamond Jubilee volume, Calcutta Mathematical Society, Calcutta, India, pp 63–93

    Google Scholar 

  • Debnath L (1994) Nonlinear water waves. Academic Press, Boston

    Google Scholar 

  • Debnath L (2009) Water waves and the Korteweg and de Vries equation. In: Encyclopedia of complexity and system science, vol 23. Springer, Berlin, pp 9967–10005

    Google Scholar 

  • Debnath L (2010) The legacy of Leonhard Euler – a tricentennial tribute. Imperial College Press, London

    MATH  Google Scholar 

  • Debnath L (2012) Nonlinear partial differential equations for scientists and engineers, 3rd edn. Birkhäuser, Boston

    MATH  Google Scholar 

  • Debnath L, Basu U (1978) Propagation of magnetohydrodynamics dispersive wave on a running stream. Plasma Phys 20:343–348

    ADS  Google Scholar 

  • Debnath L, Basu U (1988) On a Cauchy-Poisson capillary-gravity waves in a viscous liquid. Bull Calcutta Math Soc 91:197–208

    Google Scholar 

  • Debnath L, Rosenblat S (1969) The ultimate approach to the steady state in the generation of waves on a running stream. Q J Mech Appl Math XXII:221–233

    Google Scholar 

  • Degasperis A, Procesi M (1999) Asymptotic integrability. In: Degasperis A, Gaeta G (eds) Symmetry and perturbation theory. World Scientific, Singapore

    Google Scholar 

  • Dullin H, Gottwald G, Holm D (2002) A new integer equation with peaxon solutions. Theor Math Phys 133:1461–1472

    Google Scholar 

  • Dullin H, Gottwald G, Holm D (2003) Camasa–Holm, Korteweg–de Vries and other asymptotically equivalent shallow water waves Fluid Dyn Res 33:73 –75

    Google Scholar 

  • Dullin H, Gottwald G, Holm D (2004) On asymptotically equivalent shallow water wave equation. Phys D 190:1–14

    MathSciNet  MATH  Google Scholar 

  • Dysthe KB (1979) Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc R Soc Lond A369:105–114

    ADS  Google Scholar 

  • Dysthe KB, Das KP (1981) Coupling between a surface-wave spectrum and an internal wave: modulation interaction. J Fluid Mech 104:483–503

    MATH  ADS  Google Scholar 

  • Ertekin RC, Webster WC, Wehausen JV (1984) Ship generated solitons. In: Proceedings of the 5th symposium on naval hydrogen. National Academy of Sciences, Washington, DC, pp 1–15

    Google Scholar 

  • Escher J, Liu Y, Yin Z (2006) Global weak solution and blow-up structure for the Degasperis-Procesi equation. J Funct Anal 241:457–485

    MathSciNet  MATH  Google Scholar 

  • Feir JE (1967) Discussion: some results from wave pulse experiments. Proc R Soc Lond A299:54–58

    ADS  Google Scholar 

  • Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems I, Los Alamos Report LA 1940. In: Newell AC (ed) Lectures in applied mathematics, vol 15. American Mathematical Society, Providence, pp 143–156

    Google Scholar 

  • Fokas AS, Fuchssteiner B (1981) Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys D 4:47–66

    MathSciNet  MATH  Google Scholar 

  • Freeman NC, Davey A (1975) On the evolution of packets of long surface waves. Proc R Soc Lond A344:427–433

    MathSciNet  ADS  Google Scholar 

  • Fuchssteiner B (1981) The Lie algebra structure of nonlinear evolution equations and infinite dimensional Abelian symmetry groups. Prog Theor Phys 65:861–876

    MathSciNet  MATH  ADS  Google Scholar 

  • Gui G, Lui Y, Tian L (2008) Global existence and blow-up phenomena for the peakon b-family of equations. Indiana Univ Math J 57:1209–1234

    MathSciNet  MATH  Google Scholar 

  • Hogan DJ (1985) Particle trajectories in nonlinear gravity-capillary waves. J Fluid Mech 151:105–119

    MATH  ADS  Google Scholar 

  • Holm DD, Stanley MF (2003) Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1 + 1 nonlinear evolutionary PDE. Phys Lett 308:437–444

    MathSciNet  MATH  Google Scholar 

  • Huang D-B, Sibul OJ, Webster WC, Wehausen JV, Wu D-M, Wu TY (1982) Ship moving in a transcritical range. In: Proceedings of the conference on behavior of ships in restricted waters, Varna, vol 2, pp 26-1–26-10

    Google Scholar 

  • Janssen PAEM (1983a) On a fourth-order envelope equation for deep water waves. J Fluid Mech 126:1–11

    MathSciNet  MATH  ADS  Google Scholar 

  • Janssen PAEM (1983b) Long time behavior of a random inhomogeneous field of weakly nonlinear surface gravity waves. J Fluid Mech 133:113–132

    MathSciNet  MATH  ADS  Google Scholar 

  • Janssen PAEM (1987) The initial evolution of gravity-capillary waves. J Fluid Mech 184:581–597

    MATH  ADS  Google Scholar 

  • Jeffrey A (1964) The breaking of waves on a sloping beach. Z Angew Math Phys 15:97–107

    MathSciNet  MATH  Google Scholar 

  • Johnson RS (1997) A modern introduction to the mathematical theory of water waves. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Johnson R (2002) Camassa-Holm, Korteweg-de Vries and related models for water waves. J Fluid Mech 455:63–82

    MathSciNet  MATH  ADS  Google Scholar 

  • Jones DS (1966) Generalized functions. Academic, New York

    Google Scholar 

  • Kadomtsev BB, Petviashvili VV (1970) On the stability of solitary waves in weakly dispersive media. Sov Phys Dokl 15:539–541

    MATH  ADS  Google Scholar 

  • Kaplan P (1957) The waves generated by the forward motion of oscillatory pressure distribution. In: Proceedings of the 5th Midwest conference on fluid mechanics, Boulder, Colorado, pp 316–328

    Google Scholar 

  • Katsis C, Akylas TR (1987) Solitary interval waves in a rotating channel: a numerical study. Phys Fluids 30:297–301

    MATH  ADS  Google Scholar 

  • Kruskal M (1975) Nonlinear wave equations. In: Moser J (ed) Dynamical systems, theory and applications, vol 38, Lecture notes in physics. Springer, Heidelburg, pp 310–345

    Google Scholar 

  • Lake BM, Yuen HC, Rundgaldier H, Ferguson WE (1977) Nonlinear deep-water waves: theory and experiment, part 2, evolution of a continuous wave train. J Fluid Mech 83:49–74

    ADS  Google Scholar 

  • Lai S, Wu Y (2011) A model containing both Camassa–Holm and Degarperis–Processi equations. J Math Anal Appl 374:458–469

    Google Scholar 

  • Lenells J (2005) Conservation laws of the Camassa-Holm equation. J Phys A 38:869–880

    MathSciNet  MATH  ADS  Google Scholar 

  • Leo M, Leo RA, Soliani G, Solombrino L (1983) Lie-Bäcklund symmetrics for the Harry Dym equation. Phys Rev D 27:1406–1408

    MathSciNet  ADS  Google Scholar 

  • Lighthill MJ (1958) An introduction to Fourier analysis and generalized functions. Cambridge University Press, Cambridge

    Google Scholar 

  • Lighthill MJ (1965) Group velocity. J Inst Math Appl 1:1–28

    MathSciNet  Google Scholar 

  • Lighthill MJ (1967) Some special cases treated by the Whitham theory. Proc R Soc Lond A299:38–53

    ADS  Google Scholar 

  • Lighthill MJ (1978) Waves in fluids. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lo E, Mei CC (1985) A numerical study of water-wave modulation based on higher-order nonlinear Schrödinger equation. J Fluid Mech 150:395–416

    MATH  ADS  Google Scholar 

  • Longuet-Higgins MS (1978a) The instability of gravity waves of finite amplitude in deep water I, superharmonics. Proc R Soc Lond A360:471–488

    MathSciNet  ADS  Google Scholar 

  • Longuet-Higgins MS (1978b) The instability of gravity waves of finite amplitude in deep water II, superharmonics. Proc R Soc Lond A360:489–505

    MathSciNet  ADS  Google Scholar 

  • Luke JC (1967) A variational principle for fluid with free surface. J Fluid Mech 27:395–397

    MathSciNet  MATH  ADS  Google Scholar 

  • Lundmark H (2007) Formation and dynamics of shock waves in the Degasperis-Procesi equation. J Nonlinear Sci 17:169–198

    MathSciNet  MATH  ADS  Google Scholar 

  • Lundmark H, Szmigielski J (2003) Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Probl 9:1241–1245

    MathSciNet  ADS  Google Scholar 

  • Matsuno Y (2005a) Multisoliton solutions of the Degasperis-Procesi equation and their peakon limit. Inverse Probl 21:1553–1570

    MathSciNet  MATH  ADS  Google Scholar 

  • Matsuno Y (2005b) The N-soliton solutions of the Degasperis-Procesi equation. Inverse Probl 21:2085–2101

    MathSciNet  MATH  ADS  Google Scholar 

  • McKean HP (2003) Fredholm determinants and the Camassa-Holm hierarchy. Commun Pure Appl Math 56:638–680

    MathSciNet  MATH  Google Scholar 

  • Melville WK (1982) Instability and breaking of deep water waves. J Fluid Mech 115:165–185

    ADS  Google Scholar 

  • Miles JW (1962) Transient gravity wave response to an oscillating pressure. J Fluid Mech 13:145–150

    MathSciNet  MATH  ADS  Google Scholar 

  • Mei CC (1976) Flow around a thin body moving in a shallow water. J Fluid Mech 77:737–751

    Google Scholar 

  • Moffatt HK (1985) Magnetostatic equillibria and analogous Euler flows of arbitrarily complex topology, part I, fundamentals. J Fluid Mech 159:359–378

    MathSciNet  MATH  ADS  Google Scholar 

  • Ohta Y, Maruno KI, Feng BF (2008) An integrable semi-discretization of Camassa-Holm equation and its determinant solution. J Phys A Math Theor 41:1–30

    MathSciNet  Google Scholar 

  • Olver PJ (1984a) Hamiltonian and non-Hamiltonian models for water waves. In: Ciarlet PG, Roseau M (eds) Trends and applications of pure mathematics to mechanics, vol 195, Lecture notes in physics. Springer, New York

    Google Scholar 

  • Olver PJ (1984b) Hamiltonian perturbation theory and water waves. Contemp Math 28:231–249

    MathSciNet  MATH  Google Scholar 

  • Parker A (2004) On the Camassa-Holm equation and a direct method of solution: I. Bilinear form and solitary waves. Proc R Soc Lond 460:2929–2957

    MATH  ADS  Google Scholar 

  • Parker A (2005a) On the Camassa-Holm equation and a direct method of solution: II. Soliton solutions. Proc R Soc Lond 461:3611–3632

    MATH  ADS  Google Scholar 

  • Parker A (2005b) On the Camassa-Holm equation and a direct method of solution: III. N-soliton solutions. Proc R Soc Lond 461:3839–3911

    Google Scholar 

  • Pullin DI, Grimshaw RHJ (1988) Finite amplitude solitary waves at the interface between two homogeneous fluids. Phys Fluids 31:3550–3559

    MathSciNet  MATH  ADS  Google Scholar 

  • Qiao ZJ (2003) The Camassa-Holm hierarchy, related N-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold. Commun Math Phys 239:309–341

    MATH  ADS  Google Scholar 

  • Qiao ZJ, Zhang G (2006) On peaked and smooth solitons for the Camassa-Holm equation. Europhys Lett 73:657–663

    MathSciNet  ADS  Google Scholar 

  • Rosenau P (1997) On nonanalytical solitary waves formed by a nonlinear dispersion. Phys Lett A230:305–318

    MathSciNet  ADS  Google Scholar 

  • Simmen JA, Saffman PG (1985) Steady deep water waves on a linear shear current. Stud Appl Math 75:35–57

    MathSciNet  Google Scholar 

  • Stiassnie M (1983) Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion 5:10–15

    Google Scholar 

  • Stoker JJ (1957) Water waves. Interscience, New York

    MATH  Google Scholar 

  • Stuart JT (1987) Nonlinear Euler partial differential equations: singularities in their solutions. Applied mathematics, fluid mechanics and astrophysics. World Scientific, Singapore (1988), Cambridge, MA (1987), pp 81–85

    Google Scholar 

  • Su M-Y (1982a) Three-dimensional deep-water waves, part-I, experimental measurement of skew and symmetric wave patterns. J Fluid Mech 124:73–108

    ADS  Google Scholar 

  • Su M-Y (1982b) Evolution of groups of gravity waves with moderate to high steepness. Phys Fluids 25:2167–2174

    ADS  Google Scholar 

  • Teles Da Silva AF, Peregrine DH (1988) Steep solitary waves in water of finite depth with constant vorticity. J Fluid Mech 195:281–305

    MathSciNet  ADS  Google Scholar 

  • Vakhnenko V, Parkes E (2004) Periodic and solitary-wave solutions of the Degasperis-Procesi equation. Chaos, Solitons Fractals 20:1059–1073

    MathSciNet  MATH  ADS  Google Scholar 

  • Vanden-Broeck JM (1994) Steep solitary waves in water of finite depth with constant vorticity. J Fluid Mech 274:339–348

    MathSciNet  MATH  ADS  Google Scholar 

  • Vanden-Broeck JM (1995) New families of steep solitary waves in water of finite depth with constant vorticity. Eur J Mech B Fluid 14:761–774

    MathSciNet  MATH  Google Scholar 

  • Vanden-Broeck JM (1996a) Periodic waves with constant vorticity in water of infinite depth. IMA J Appl Math 56:207–217

    MATH  Google Scholar 

  • Vanden-Broeck JM (1996b) Numerical calculations of the free-surface flow under a sluice gate. J Fluid Mech 330:339–347

    MathSciNet  ADS  Google Scholar 

  • Vanden-Broeck JM (2010) Gravity-capillary free-surface flows. Cambridge University Press, London

    MATH  Google Scholar 

  • Whitham GB (1965a) Nonlinear dispersion of water waves. J Fluid Mech 27:399–412

    MathSciNet  ADS  Google Scholar 

  • Whitham GB (1965b) Variational methods and application to water waves. Proc R Soc Lond A299:6–25

    ADS  Google Scholar 

  • Whitham GB (1974) Linear and nonlinear waves. Wiley, New York

    MATH  Google Scholar 

  • Wu DM, Wu TY (1982) Three-dimensional nonlinear long waves due to a moving pressure. In: Proceedings of the 14th symposium on naval hydrogen. National Academy of Sciences, Washington, DC, pp 103–129

    Google Scholar 

  • Wurtele MG (1955) The transient development of a lee wave J Mar Res 14:1–13

    Google Scholar 

  • Yuen HC, Ferguson WE Jr (1978a) Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schrödinger equation. Phys Fluids 21:1275–1278

    ADS  Google Scholar 

  • Yuen HC, Ferguson WE Jr (1978b) Fermi-Pasta-Ulam recurrence in the two dimensional nonlinear Schrödinger equation. Phys Fluids 21:2116–2118

    ADS  Google Scholar 

  • Yuen HC, Lake BM (1982) Nonlinear dynamics of deep-water gravity waves. Adv Appl Mech 22:67–229

    MathSciNet  MATH  Google Scholar 

  • Zakharov VE (1968a) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 9:86–94

    Google Scholar 

  • Zakharov VE (1968b) Stability of periodic waves of finite amplitude on the surface of a deep fluid. J Appl Mech Tech Phys 2:190–194

    ADS  Google Scholar 

  • Zhang G, Qiao Z (2007) Cupsons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition. Math Phys Anal Geom 10:205–225

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokenath Debnath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media New York (outside the USA)

About this entry

Cite this entry

Debnath, L., Basu, K. (2014). Nonlinear Water Waves and Nonlinear Evolution Equations with Applications. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_609-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_609-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics