Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Seismology, Rotational, Complexity

  • Heiner Igel
  • Moritz Bernauer
  • Joachim Wassermann
  • Karl Ulrich Schreiber
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_608-1

Definition of Subject and Its Importance: Rotational Seismology

… note the utility of measuring rotation …, but as of this writing seismology still awaits a suitable instrument for making such measurements (Aki and Richards 2002)

Most seismological studies are built on the observation of ground translational motions (up–down, N–S, E–W, using seismometers as velocity sensors, accelerometers, or GPS). This concerns the study of the Earth’s interior by seismic tomography; the understanding of earthquake processes, crustal deformation, and the seismic cycle; the quantification of shaking hazard; the analysis of the structural health of buildings; and the seismic exploration for resources. Despite the fact that theoreticians have pointed out for decades that – to fully understand seismic sources and ground motion – the associated rotationalmotions (around three orthogonal axes) should also be observed, this has until recently been impossible due to the limited sensitivity of rotation...

Keywords

Ground Motion Seismic Source Love Wave Ring Laser Rotation Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. Aki K, Richards P (2002) Quantitative seismology, 2nd edn. University Science, SausalitoGoogle Scholar
  2. Beghein C, Trampert J (2003) Robust normal mode constraints on inner core anisotropy from model space search. Science 299:552–555. doi:10.1126/science.1078159CrossRefADSGoogle Scholar
  3. Belfi J, Beverini N, Bosi F, Carelli G, Di Virgilio A, Kolker D, Maccioni E, Ortolan A, Passaquieti R, Stefani F (2012a) Performance of the “G-Pisa” ring laser gyro at the Virgo site. J Seismol 16(4):757–766. doi:10.1007/s10950-012-9277-8, special issue 2IWGoRSCrossRefGoogle Scholar
  4. Belfi J, Beverini N, Bosi F, Carelli G, Di Virgilio A, Maccioni E, Saccorotti G, Stefani F, Velikoseltsev A (2012b) Horizontal rotation signals detected by “G-Pisa” ring laser for the MW = 9.0, March 2011, Japan earthquake. J Seismol 16(4):767–776. doi:10.1007/s10950-012-9276-9, special issue 2IWGoRSCrossRefGoogle Scholar
  5. Bernauer M, Fichtner A, Igel H (2009) Inferring Earth structure from combined measurements of rotational and translational ground motions. Geophysics 74(6):WCD41–WCD47CrossRefGoogle Scholar
  6. Bernauer F, Wassermann J, Igel H (2012a) Rotational sensors – a comparison of different sensor types. J Seismol 16(4):595–602. doi:10.1007/s10950-012-9286-7, special issue 2IWGoRSCrossRefGoogle Scholar
  7. Bernauer M, Fichtner A, Igel H (2012b) Measurements of translation, rotation and strain: new approaches to seismic processing and inversion. J Seismol 16(4):669–681. doi:10.1007/s10950-012-9298-3, special issue 2IWGoRSCrossRefGoogle Scholar
  8. Bernauer M, Fichtner A, Igel H (2014a) Reducing non-uniqueness in finite source inversion using rotational ground motions. J Geophys Res Solid Earth 119(6):4860CrossRefADSGoogle Scholar
  9. Bernauer M, Fichtner A, Igel H (2014b) Optimal observables for multi-parameter seismic tomography. Geophys J Int 198(2):1241CrossRefADSGoogle Scholar
  10. Blum J, Igel H, Zumberge M (2010) Observations of Rayleigh-wave phase velocity and coseismic deformation using an optical fiber, interferometric vertical strainmeter at the SAFOD borehole, California. Bull Seismol Soc Am 100:1879–1891CrossRefGoogle Scholar
  11. Bodin P, Gomberg J, Singh SK, Santoyo M (1997) Dynamic deformations of shallow sediments in the Valley of Mexico, Part I: three-dimensional strains and rotations recorded on a seismic array. Bull Seismol Soc Am 87:528–539Google Scholar
  12. Bouchon M, Aki K (1982) Strain, tilt, and rotation associated with strong ground motion in the vicinity of earthquake faults. Bull Seismol Soc Am 72(5):1717–1738Google Scholar
  13. Brokešová J, Málek J, Kolinsky P (2012) Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in-situ calibration. J Seismol 16(4):603–621. doi:10.1007/s10950-012-9274-y, special issue 2IWGoRSCrossRefGoogle Scholar
  14. Cochard A, Igel H, Flaws A, Schuberth B, Wassermann J, Suryanto W (2006) Rotational motions in seismology. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–412CrossRefGoogle Scholar
  15. Cosserat E, Cosserat F (1909) Théorie des Corps Déformables. Hermann, Paris (available from the Cornell University Library Digital Collections)Google Scholar
  16. Dubetsky B, Kasevich MA (2006) Atom interferometer as a selective sensor of rotation or gravity. Phys Rev A 74(2):023615CrossRefADSGoogle Scholar
  17. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356CrossRefADSGoogle Scholar
  18. Eentec, Electrochemical Sensor Transducers (2006) http://www.eentec.com/pdf/ELECTROCHEMICA-1.pdf
  19. Eringen A (1999) Microcontinuum field theories. I. Foundation and solids. Springer, New YorkCrossRefGoogle Scholar
  20. Evans JR, Followill F, Hutt CR, Kromer RP, Nigbor RL, Ringler AT, Steim JM, Wielandt E (2010) Method for calculating self-noise spectra and operating ranges for seismographic inertial sensors and recorders. Seismol Res Lett 81(4):640–646. doi:10.1785/gssrl.81.4.640CrossRefGoogle Scholar
  21. Ferreira A, Igel A (2009) Rotational motions of seismic surface waves in a laterally heterogeneous Earth. Bull Seismol Soc Am 99(2B):1429CrossRefGoogle Scholar
  22. Fichtner A, Igel H (2009) Sensitivity densities for rotational ground-motion measurements. Bull Seismol Soc Am 99:1302–1314CrossRefGoogle Scholar
  23. Fichtner A, Bunge HP, Igel H (2006) The adjoint method in seismology: I-theory. Phys Earth Planet Int 157:86–104CrossRefADSMATHGoogle Scholar
  24. Franco-Anaya R, Carr AJ, Schreiber KU (2008) Qualification of fibre-optic gyroscopes for civil engineering applications. In: 2008 NZSEE conference, Wairakei, New Zealand, p 8Google Scholar
  25. Friedrich A, Krüger F, Klinge K (1998) Ocean-generated microseismic noise located with the Gräfenberg array. J Seismol 2(1):47–64CrossRefGoogle Scholar
  26. Gaebler P, Sens-Schönfelder C, Korn M (2013) The radiative transfer approach to rotational motions – estimation of crustal scattering parameters, EGU General Assembly 2013, Geophysical Research abstracts, vol 15, EGU2013-748Google Scholar
  27. Gilbert F, Dziewonski AM (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos Trans R Soc Lond A 278:187–269. doi:10.1098/rsta.1975.0025CrossRefADSGoogle Scholar
  28. Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon flat observatory, California. Bull Seismol Soc Am 86:212–220Google Scholar
  29. Graizer V (2009) The response to complex ground motions of seismometers with Galperin sensor configuration. Bull Seismol Soc Am 99(2B):1366–1377CrossRefGoogle Scholar
  30. Grekova EF (2012) Nonlinear isotropic elastic reduced Cosserat continuum as a possible model for geomedium and geomaterials; spherical prestressed state in a semilinear material. J Seismol 16(4):695–707. doi:10.1007/s10950-012-9299-2, special issue 2IWGoRSCrossRefGoogle Scholar
  31. Grekova EF, Kulesh MA, Herman GC (2009) Waves in linear elastic media with microrotations, part 2: isotropic reduced cosserat model. Bull Seismol Soc Am 99(2B):1423–1428CrossRefGoogle Scholar
  32. Hadziioannou C, Gaebler P, Schreiber U, Wassermann J, Igel H (2012) Examining ambient noise using colocated measurements of rotational and translational motion. J Seismol 16(4):787–796CrossRefGoogle Scholar
  33. Harrison JC (1976) Cavity and topographic effects in tilt and strain measurement. J Geophys Res 81(2):319–328CrossRefADSGoogle Scholar
  34. Hinzen K-G (2012) Rotation of vertically oriented objects during earthquakes. J Seismol 16(4):797–814. doi:10.1007/s10950-012-9255-6, special issue 2IWGoRSCrossRefGoogle Scholar
  35. Huang BS (2003) Ground rotational motions of the 1991 Chi-Chi, Taiwan, earthquake as inferred from dense array observations. Geophys Res Lett 30(6):1307–1310CrossRefADSGoogle Scholar
  36. Igel H, Schreiber KU, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2003) Rotational motions induced by the M8.1 Tokachi-Oki earthquake, September 25, 2003. Geophys Res Lett 32, L08309ADSGoogle Scholar
  37. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber KU, Velikoseltsev A, Pham DN (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168(1):182–196CrossRefADSGoogle Scholar
  38. Igel H, Nader MF, Kurrle D, Ferreira AM, Wassermann J, Schreiber KU (2011) Observations of Earth’s toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake. Geophys Res Lett 38, L213032011CrossRefGoogle Scholar
  39. Igel H, Brokešová J, Evans JR, Zembaty Z (2012a) Preface to the special issue on “Advances in rotational seismology: instrumentation, theory, observations, and engineering”. J Seismol 16(4):571–572. doi:10.1007/s10950-012-9307-6, special issue 2IWGoRSCrossRefGoogle Scholar
  40. Ishii M, Tromp J (1999) Normal mode and free air gravity constraints on lateral variations in velocity and density of the Earth’s mantle. Science 285:1231–1236. doi:10.1126/science.285.5431.1231CrossRefGoogle Scholar
  41. Jaroszewicz LR, Krajewski Z, Teisseyre R (2012) Usefulness of AFORS – autonomous fibre-optic rotational seismograph for investigation of rotational phenomena. J Seismol 16(4):573–586. doi:10.1007/s10950-012-9258-3, special issue 2IWGoRSCrossRefGoogle Scholar
  42. Jedlička P, Kozák J, Evans JR, Hutt CR (2012) Designs and test results for three new rotational sensors. J Seismol 16(4):639–647. doi:10.1007/s10950-012-9293-8, special issue 2IWGoRSCrossRefGoogle Scholar
  43. Kao GC (1998) Design and shaking table tests of a four-storey miniature structure built with replaceable plastic hinges. ME thesis, University of Canterbury, ChristchurchGoogle Scholar
  44. Kendall LM, Langston CA, Lee WHK, Lin CJ, Liu CC (2012) Comparison of point and array-computed rotations for the TAIGER explosions of 4 March 2008. J Seismol 16(4):733–743. doi:10.1007/s10950-012-9297-4, special issue 2IWGoRSCrossRefGoogle Scholar
  45. Kulesh M (2009) Waves in linear elastic media with microrotations, part 1: isotropic full cosserat model. Bull Seismol Soc Am 99(2B):1416–1422CrossRefGoogle Scholar
  46. Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber KU (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37(4):1–5CrossRefGoogle Scholar
  47. Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with micro-structure. Wiley, New York, pp 1–22Google Scholar
  48. Lefevre HC, Arditty HJ (1992) Fiber-optic gyroscope. In: AGARD, advances in Fibre-optic technology in communications and for guidance and control 6 p (SEE N92-28084 18–32), vol 1Google Scholar
  49. Leugoud R, Kharlamov A (2012) Second generation of a rotational electrochemical seismometer using magnetohydrodynamic technology. J Seismol 16(4):587–593. doi:10.1007/s10950-012-9290-y, special issue 2IWGoRSCrossRefGoogle Scholar
  50. Lin C-J, Huang W-G, Huang H-P, Huang B-S, Ku C-S, Liu C-C (2012) Investigation of array-derived rotation in TAIPEI 101. J Seismol 16(4):721–731. doi:10.1007/s10950-012-9306-7, special issue 2IWGoRSCrossRefGoogle Scholar
  51. McLeod DP, Stedman GE, Webb TH, Schreiber KU (1998) Comparison of standard and ring laser rotational seismograms. Bull Seismol Soc Am 88:1495–1503Google Scholar
  52. Mikumo T, Aki K (1964) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments. J Geophys Res 69:721–731CrossRefADSGoogle Scholar
  53. Moriya T, Marumo T (1998) Design for rotation seismometers and their calibration. Geophys Bull Hokkaido Univ 61:99–106Google Scholar
  54. Nader MF, Igel H, Ferreira AMG, Kurrle D, Wassermann J, Schreiber KU (2012) Toroidal free oscillations of the Earth observed by a ring laser system: a comparative study. J Seismol 16(4):745–755. doi:10.1007/s10950-012-9304-9, special issue 2IWGoRSCrossRefGoogle Scholar
  55. Nader MF, Igel H, Ferreira AMG, Al-Attar D, Wassermann J, Schreiber KU (2015) Normal mode coupling observations with a rotation sensor. Geophys J Int 201(3):1482–1490. doi:10.1093/gji/ggv082Google Scholar
  56. Nigbor RL (1994) Six-degree-of-freedom ground-motion measurement. Bull Seismol Soc Am 84(5):1665–1669Google Scholar
  57. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27(21):3553CrossRefADSGoogle Scholar
  58. Park J (2005) Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake. Science 308(5725):1139–1144CrossRefADSGoogle Scholar
  59. Pham ND, Igel H, Wassermann J, Kaeser M, de la Puente J, Schreiber KU (2009a) Observations and modeling of rotational signals in the P Coda: constraints on crustal scattering. Bull Seismol Soc Am 99(2B):1315–1332CrossRefGoogle Scholar
  60. Pham ND, Igel H, Wassermann J, Cochard A, Schreiber KU (2009b) The effects of tilt on interferometric rotation sensors. Bull Seismol Soc Am 99(2B):1352–1365CrossRefGoogle Scholar
  61. Pham ND, Huang B-S, Lin C-J, Vu T-M, Tran N-A (2012) Investigation of ground rotational motions caused by direct and scattered P-waves from the 4 March 2008 TAIGER explosion experiment. J Seismol 16(4):709–720CrossRefGoogle Scholar
  62. Pujol J (2009) Tutorial on rotations in the theories of nite deformation and micropolar (cosserat) elasticity. Bull Seismol Soc Am 99(2B):1011–1027CrossRefGoogle Scholar
  63. Rautenberg V, Plag H-P, Burns M, Stedman GE, Jüttner H-U (1997) Tidally induced Sagnac signal in a ring laser. Geophys Res Lett 24:893–896CrossRefADSGoogle Scholar
  64. Sacks IS, Snoke JA, Evans R, Beavan J (1976) Single-site phase velocity measurement. Geophys J Roy Astron Soc 46:253–258CrossRefADSGoogle Scholar
  65. Schreiber KU, Wells J-PR (2013) Invited review article: large ring lasers for rotation sensing. Rev Sci Instrum 84(4):041101–26CrossRefADSGoogle Scholar
  66. Schreiber KU, Klügel T, Stedman GE (2003) Earth tide and tilt detection by a ring laser gyroscope. J Geophys Res 108(B2). doi:10.1029/2001JB000569Google Scholar
  67. Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire DL (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. J Geophys Res 109. doi:10.1029/ 2003JB002803Google Scholar
  68. Schreiber KU, Stedman G, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 377–390CrossRefGoogle Scholar
  69. Schreiber KU, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J-PR (2009a) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99(2B):1190–1198CrossRefGoogle Scholar
  70. Schreiber KU, Velikoseltsev A, Carr AJ, Franco-Anaya R (2009b) The application of fiber optic gyroscopes for the measurement of rotations in structural engineering. Bull Seismol Soc Am 99(2B):1207–1214CrossRefGoogle Scholar
  71. Spudich P, Fletcher JB (2008) Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw 6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations. Bull Seismol Soc Am 98(4):1898–1914CrossRefGoogle Scholar
  72. Spudich P, Fletcher JB (2009) Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions. Bull Seismol Soc Am 99(2B):1480–1482CrossRefGoogle Scholar
  73. Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stresses at Parkfield, California, produced by the M7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100(B1):675–690CrossRefADSGoogle Scholar
  74. Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Rep Prog Phys 60:615–688CrossRefADSGoogle Scholar
  75. Stedman GE, Li Z, Bilger HR (1995) Sideband analysis and seismic detection in large ring lasers. Appl Opt 34:7390–7396CrossRefGoogle Scholar
  76. Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96:2059–2071. doi:10.1785/0120060004CrossRefGoogle Scholar
  77. Takeo M (1998) Ground rotational motions recorded in near-source region of earthquakes. Geophys Res Lett 25(6):789–792CrossRefADSGoogle Scholar
  78. Takeo M, Ito HM (1997) What can be learned from rotational motions excited by earthquakes? Geophys J Int 129:319–329CrossRefADSGoogle Scholar
  79. Teisseyre R (2012) Rotation and strain seismology. J Seismol 16(4):683–694. doi:10.1007/s10950-012-9287-6, special issue 2IWGoRSCrossRefGoogle Scholar
  80. Teisseyre R, Suchcicki J, Teisseyre KP, Wiszniowski J, Palangio P et al (2003) Seismic rotation waves: basic elements of theory and recording. Annali di Geofisica 46:671–685Google Scholar
  81. Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal, and banana-donut kernels. Geophys J Int 160:195–216CrossRefADSGoogle Scholar
  82. van Driel M, Wassermann J, Nader MF, Schuberth BSA, Igel H (2012) Strain rotation coupling and its implications on the measurement of rotational ground motions. J Seismol 16(4):657–668. doi:10.1007/s10950-012-9296-5, special issue 2IWGoRSCrossRefGoogle Scholar
  83. van Driel M, Wassermann J, Pelties C, Schiemenz A, Igel H (2014) Tilt effects on moment tensor inversion in the nearfield of active volcanoes. Geophys J Int (in press)Google Scholar
  84. Velikoseltsev A, Schreiber KU, Yankovsky A, Wells J-PR, Boronachin A, Tkachenko A (2012) On the application of fiber optic gyroscopes for detection of seismic rotations. J Seismol 16(4):623–637. doi:10.1007/s10950-012-9282-yCrossRefGoogle Scholar
  85. Wang H, Igel H, Gallovic F, Cochard A (2009) Source and basin effects on rotational ground motions: comparison with translations. Bull Seismol Soc Am 99(2B):1162–1173CrossRefGoogle Scholar
  86. Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Am 99(2B):1449–1456CrossRefGoogle Scholar
  87. Widmer-Schnidrig R, Zürn W (2009) Perspectives for ring laser gyroscopes in low frequency seismology. Bull Seismol Soc Am 99(2B):1199–1206CrossRefGoogle Scholar
  88. Wielandt E, Forbriger T (1999) Near-field seismic displacement and tilt associated with the explosive activity of Stromboli. Ann Geofisc 42(3):407–416Google Scholar
  89. Wu CF, Lee WHK, Huang HC (2009) Array deployment to observe rotational and translational ground motions along the Meishan fault, Taiwan: a progress report. Bull Seismol Soc Am 99(2B):1468–1474CrossRefGoogle Scholar

Books and Reviews

  1. Igel H, Brokešová J, Evans JR, Zembaty Z (eds) (2012) Special issue on “Advances in rotational seismology: instrumentation, theory, observations, and engineering”. J Seis 16(4):571–838Google Scholar
  2. Lee WHK, Çelebi M, Todorovska MI, Igel H (eds) (2009) Special issue on Rotational seismology and engineering applications. Bull Seismol Soc Am 99(2B):945–1485Google Scholar
  3. Lee WHK, Evans JR, Huang B-S, Hutt CR, Lin C-J, Liu C-C, Nigbor RL (2012) Measuring rotational ground motions in seismological practice. In: Bormann P (ed) New manual of seismological observatory practice 2 (NMSOP-2). Deutsches GeoForschungsZentrum GFZ, Potsdam, pp 1–27. doi:10.2312/GFZ.NMSOP-2_IS_5.3Google Scholar
  4. Teisseyre R, Takeo M, Majewski E (eds) (2006) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–412Google Scholar

Web Links

  1. IWGoRS (International Working Group on Rotational Seismology). www.rotational-seismology.org
  2. ROMY (Rotational Motions: A New Observable for Seismology, ERC Advanced Project 2013). www.romy-erc.eu

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Heiner Igel
    • 1
  • Moritz Bernauer
    • 1
  • Joachim Wassermann
    • 1
  • Karl Ulrich Schreiber
    • 2
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversityMunichGermany
  2. 2.Technische Universität München Forschungseinrichtung Satellitengeodäsie Fundamentalstation WettzellBad KötztingGermany