Skip to main content

Zero-Sum Two Person Games

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 137 Accesses

Introduction

Conflicts are an inevitable part of human existence. This is a consequence of the competitive stances of greed and the scarcity of resources, which are rarely balanced without open conflict. Epic poems of the Greek, Roman, and Indian civilizations which document wars between nation-states or clans reinforce the historical legitimacy of this statement. It can be deduced that domination is the recurring theme in human conflicts. In a primitive sense this is historically observed in the domination of men over women across cultures while on a more refined level it can be observed in the imperialistic ambitions of nation-state actors. In modern times, a new source of conflict has emerged on an international scale in the form of economic competition between multinational corporations.

While conflicts will continue to be a perennial part of human existence, the real question at hand is how to formalize mathematically such conflicts in order to have a grip on potential solutions....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Alpern S, Gal S (2003) The theory of search games and rendezvous. Springer

    Google Scholar 

  • Aumann RJ (1981) Survey of repeated games, essays in game theory and mathematical economics. In: Honor of Oscar Morgenstern. Bibliographsches Institut, Mannheim, pp 11–42

    Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bapat RB, Raghavan TES (1997) Nonnegative matrices and applications. In: Encyclopedia in mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bellman R, Blackwell D (1949) Some two person games involving bluffing. Proc Natl Acad Sci U S A 35:600–605

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Berge C (1963) Topological spaces. Oliver Boyd, Edinburgh

    MATH  Google Scholar 

  • Berger U (2007) Brown’s original fictitious play. J Econ Theory 135:572–578

    Article  MathSciNet  MATH  Google Scholar 

  • Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays, vol 1, 2. Academic, New York

    MATH  Google Scholar 

  • Binmore K (1992) Fun and game theory a text on game theory. Lexington, DC Heath

    MATH  Google Scholar 

  • Blackwell D (1951) On a theorem of Lyapunov. Ann Math Stat 22:112–114

    Article  MathSciNet  MATH  Google Scholar 

  • Blackwell D (1961) Minimax and irreducible matrices. Math J Anal Appl 3:37–39

    Article  MathSciNet  MATH  Google Scholar 

  • Blackwell D, Girshick GA (1954) Theory of games and statistical decisions. Wiley, New York

    MATH  Google Scholar 

  • Bouton CL (1902) Nim-a game with a complete mathematical theory. Ann Math 3(2):35–39

    MathSciNet  MATH  Google Scholar 

  • Brown GW (1951) Iterative solution of games by fictitious play. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York, pp 374–376

    Google Scholar 

  • Bubelis V (1979) On equilibria in finite games. Int J Game Theory 8:65–79

    Article  MathSciNet  MATH  Google Scholar 

  • Chin H, Parthasarathy T, Raghavan TES (1973) Structure of equilibria in N-person noncooperative games. Int Game J Theory 3:1–19

    Article  MATH  Google Scholar 

  • Conway JH (1982) On numbers and games, monograph 16. London Mathematical Society, London

    Google Scholar 

  • Dantzig GB (1951) A proof of the equivalence of the programming problem and the game problem. In: Koopman’s actvity analysis of production and allocationation, Cowles Conumesion monograph 13. Wiley, New York, pp 333–335

    Google Scholar 

  • Dresher M (1962) Games of strategy. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Dvoretzky A, Wald A, Wolfowitz J (1951) Elimination of randomization in certain statistical decision problems and zero-sum two-person games. Ann Math Stat 22:1–21

    Article  MATH  Google Scholar 

  • Fan K (1953) Minimax theorems. Proc Natl Acad Sci Wash 39:42–47

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ferguson TS (1967) Mathematical stat, a decision theoretic approach. Academic, New York

    MATH  Google Scholar 

  • Ferguson C, Ferguson TS (2003) On the Borel and von Neumann poker models. Game Theory Appl 9:17–32

    MathSciNet  MATH  Google Scholar 

  • Filar JA, Vrieze OJ (1996) Competitive Markov decision processes. Springer, Berlin

    Book  MATH  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Article  Google Scholar 

  • Fourier JB (1890) Second extrait. In: Darboux GO (ed) Gauthiers Villars, Paris, pp 325–328; English Translation: Kohler DA (1973)

    Google Scholar 

  • Gal S (1980) Search games. Academic, New York

    MATH  Google Scholar 

  • Gale D (1979) The game of Hex and the Brouwer fixed-point theorem. Am Math Mon 86:818–827

    Article  MathSciNet  MATH  Google Scholar 

  • Gale D, Kuhn HW, Tucker AW (1951) Linear programming and the theory of games. In: Activity analysis of production and allocation. Wiley, New York, pp 317–329

    Google Scholar 

  • Harsanyi JC (1967) Games with incomplete information played by Bayesian players, parts I, II, and III. Sci Manag 14:159–182; 32–334; 486–502

    Google Scholar 

  • Isaacs R (1965) Differential games: mathematical a theory with applications to warfare and pursuit. Control and optimization. Wiley, New York; Dover Paperback Edition, 1999

    Google Scholar 

  • Jansen MJM (1981) Regularity and stability of equilibrium points of bimatrix games. Math Oper Res 6:530–550

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Prentice Hall, New York

    MATH  Google Scholar 

  • Kakutani S (1941) A generalization of Brouwer’s fixed point theorem. Duke Math J 8:457–459

    Article  MathSciNet  MATH  Google Scholar 

  • Kantorowich LV (1960) Mathematical methods of organizing and planning production. Manag Sci 7:366–422

    Article  MathSciNet  Google Scholar 

  • Kaplansky I (1945) A contribution to von Neumann’s theory of games. Ann Math 46:474–479

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S (1959) Mathematical methods and theory in games, programming and econs, vol 1, 2. Addison Wesley, New York

    Google Scholar 

  • Kohler DA (1973) Translation of a report by Fourier on his work on linear inequalities. Opsearch 10:38–42

    MathSciNet  Google Scholar 

  • Krein MG, Rutmann MA (1950) Linear operators leaving invariant a cone in a Banach space. Amer Math Soc Transl 26:1–128

    MathSciNet  Google Scholar 

  • Kreps VL (1974) Bimatrix games with unique equilibrium points. Int Game J Theory 3:115–118

    Article  MathSciNet  MATH  Google Scholar 

  • Krishna V, Sjostrom T (1998) On the convergence of fictitious play. Math Oper Res 23:479–511

    Article  MathSciNet  MATH  Google Scholar 

  • Kuhn HW (1953) Extensive games and the problem of information. Contributions to the theory of games. Ann Math Stud 28:193–216

    Google Scholar 

  • Lindenstrauss J (1966) A short proof of Liapounoff’s convexity theorem. Math J Mech 15:971–972

    MathSciNet  MATH  Google Scholar 

  • Loomis IH (1946) On a theorem of von Neumann. Proc Nat Acad Sci Wash 32:213–215

    Article  ADS  MATH  Google Scholar 

  • Miyazawa K (1961) On the convergence of the learning process in a 2 × 2 non-zero-sum two-person game. Econometric research program, research memorandum no. 33. Princeton University, Princeton

    Google Scholar 

  • Monderer D, Shapley LS (1996) Potential LS games. Games Econ Behav 14:124–143

    Article  MATH  Google Scholar 

  • Myerson R (1991) Game theory. Analysis of conflict. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci Wash 88:48–49

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Owen G (1985) Game theory, 2nd edn. Academic, New York

    MATH  Google Scholar 

  • Parthasarathy T, Raghavan TES (1971) Some topics in two person games. Elsevier, New York

    MATH  Google Scholar 

  • Radzik T (1988) Games of timing related to distribution of resources. Optim J Theory Appl 58(443-471):473–500

    Article  MathSciNet  MATH  Google Scholar 

  • Raghavan TES (1970) Completely mixed strategies in bimatrix games. Lond J Math Soc 2:709–712

    Article  MathSciNet  MATH  Google Scholar 

  • Raghavan TES (1973) Some geometric consequences of a game theoretic result. Math J Anal Appl 43:26–30

    Article  MathSciNet  MATH  Google Scholar 

  • Rao CR (1952) Advanced statistical methods in biometric research. Wiley, New York

    MATH  Google Scholar 

  • Reijnierse JH, Potters JAM (1993) Search games with immobile hider. Int J Game Theory 21:385-394

    Google Scholar 

  • Robinson J (1951) An iterative method of solving a game. Ann Math 54:296–301

    Article  MathSciNet  MATH  Google Scholar 

  • Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50:97–109

    Article  MathSciNet  MATH  Google Scholar 

  • Schelling TC (1960) The strategy of conflict. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Selten R (1975) Reexamination of the perfectness concept for equilibrium points in extensive games. Int Game J Theory 4:25–55

    Article  MathSciNet  MATH  Google Scholar 

  • Shapley LS (1953) Stochastic games. Proc Natl Acad of Sci USA 39:1095–1100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Sion M (1958) On general minimax theorem. Pac J Math 8:171–176

    Article  MathSciNet  MATH  Google Scholar 

  • Sorin S (1992) Repeated games with complete information, ster 4. In: Aumann RJ, Hart S (eds) Handbook of game theory, vol 1. North Holland, Amsterdam, pp 71–103

    Google Scholar 

  • Thuijsman F, Raghavan TES (1997) Stochastic games with switching control or ARAT structure. Int Game J Theory 26:403–408

    Article  MATH  Google Scholar 

  • Ville J (1938) Note sur la theorie generale des jeux ou intervient l’habilite des joueurs. In: Borel E, Ville J (eds) Applications aux jeux de hasard, tome IV, fascicule II of the Traite du calcul des probabilites et de ses applications, by Emile Borel

    Google Scholar 

  • von Neumann J (1928) Zur Theorie der Gesellschaftspiele. Math Ann 100:295–320

    Article  MathSciNet  Google Scholar 

  • von Neumann J, Morgenstern O (1947) Theory of games and economic behavior, 2nd edn. Princeton University Press, Princeton

    MATH  Google Scholar 

  • von Stengel B (1996) Efficient computation of behavior strategies. Games Econ Behav 14:220–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wald A (1950) Statistical decision functions. Wiley, New York

    MATH  Google Scholar 

  • Weyl H (1950) Elementary proof of a minimax theorem due to von Neumann. Ann Math Stud 24:19–25

    MathSciNet  MATH  Google Scholar 

  • Zermelo E (1913) Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Proceedings of the fifth congress mathematicians. Cambridge University Press, Cambridge, MA, pp 501–504

    Google Scholar 

Download references

Acknowledgment

The author wishes to acknowledge the unknown referee’s detailed comments in the revision of the first draft. More importantly he drew the author’s attention to the topic of search games and other combinatorial games. The author would like to thank Ms. Patricia Collins for her assistance in her detailed editing of the first draft of this manuscript. The author owes special thanks to Mr. Ramanujan Raghavan and Dr. A.V. Lakshmi Narayanan for their help in incorporating the graphics drawings into the latex file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E.S. Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Raghavan, T. (2017). Zero-Sum Two Person Games. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_592-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_592-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics