Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Vehicular Traffic: A Review of Continuum Mathematical Models

  • Benedetto Piccoli
  • Andrea Tosin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_576-3

Definition of the Subject

Vehicular traffic is attracting a growing scientific interest because of its connections with other important problems, like environmental pollution and congestion of cities. Rational planning and management of vehicle fluxes are key topics in modern societies under both economical and social points of view, as the increasing number of projects aimed at monitoring the quality of the road traffic demonstrates. In spite of their importance, however, these issues cannot be effectively handled by simple experimental approaches. On the one hand, observation and data recording may provide useful information on the physics of traffic, highlighting some typical features like clustering of the vehicles, the appearance of stop-and-go waves, the phase transition between the regimes of free and congested flow, and the trend of the traffic in uniform flow conditions. The books by Kerner (2004) and Leutzbach (1988) extensively report about traffic phenomena, real traffic...

Keywords

Riemann Problem Vehicular Traffic Riemann Solver Fundamental Diagram Weak Entropic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Arlotti L, Bellomo N, De Angelis E (2002) Generalized kinetic (Boltzmann) models: mathematical structures and applications. Math Model Methods Appl Sci 12(4):567–591CrossRefzbMATHGoogle Scholar
  2. Armbruster D, Degond P, Ringhofer C (2006) A model for the dynamics of large queuing networks and supply chains. SIAM J Appl Math (Electron) 66(3):896–920CrossRefzbMATHMathSciNetGoogle Scholar
  3. Aw A, Rascle M (2000) Resurrection of “second order” models of traffic flow. SIAM J Appl Math 60(3):916–938CrossRefzbMATHMathSciNetGoogle Scholar
  4. Aw A, Klar A, Materne T, Rascle M (2002) Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J Appl Math (Electron) 63(1):259–278CrossRefzbMATHMathSciNetGoogle Scholar
  5. Banda MK, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media (Eelectron) 1(1):41–56CrossRefzbMATHMathSciNetGoogle Scholar
  6. Bardos C, le Roux AY, Nédélec JC (1979) First order quasilinear equations with boundary conditions. Commun Partial Differ Equ 4(9):1017–1034CrossRefzbMATHGoogle Scholar
  7. Bellomo N (2007) Modelling complex living systems. A kinetic theory and stochastic game approach. Modeling and simulation in science, engineering and technology. Birkhäuser, BostonGoogle Scholar
  8. Bellomo N, Coscia V (2005) First order models and closure of the mass conservation equation in the mathematical theory of vehicular traffic flow. C R Mec 333:843–851ADSCrossRefzbMATHGoogle Scholar
  9. Bellomo N, Lachowicz M, Polewczak J, Toscani G (1991) Mathematical topics in nonlinear kinetic theory II. The Enskog equation. Series on advances in mathematics for applied sciences, vol 1. World Scientific, TeaneckCrossRefGoogle Scholar
  10. Bellomo N, Delitala M, Coscia V (2002) On the mathematical theory of vehicular traffic flow I. Fluid dynamic and kinetic modelling. Math Model Methods Appl Sci 12(12):1801–1843CrossRefzbMATHMathSciNetGoogle Scholar
  11. Ben-Naim E, Krapivsky PL (1998) Steady-state properties of traffic flows. J Phys A 31(40):8073–8080ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. Ben-Naim E, Krapivsky PL (2003) Kinetic theory of traffic flows. Traffic Granul Flow 1:155CrossRefGoogle Scholar
  13. Berthelin F, Degond P, Delitala M, Rascle M (2008) A model for the formation and evolution of traffic jams. Arch Ration Mech Anal 187(2):185–220CrossRefzbMATHMathSciNetGoogle Scholar
  14. Bertotti ML, Delitala M (2004) From discrete kinetic and stochastic game theory to modelling complex systems in applied sciences. Math Model Methods Appl Sci 14(7):1061–1084CrossRefzbMATHMathSciNetGoogle Scholar
  15. Bonzani I (2000) Hydrodynamic models of traffic flow: drivers’ behaviour and nonlinear diffusion. Math Comput Model 31(6–7):1–8CrossRefzbMATHMathSciNetGoogle Scholar
  16. Bonzani I, Mussone L (2002) Stochastic modelling of traffic flow. Math Comput Model 36(1–2):109–119CrossRefzbMATHMathSciNetGoogle Scholar
  17. Bonzani I, Mussone L (2003) From experiments to hydrodynamic traffic flow models I. Modelling and parameter identification. Math Comput Model 37(12–13):1435–1442CrossRefzbMATHMathSciNetGoogle Scholar
  18. Bressan A (2000) Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. In: Oxford lecture series in mathematics and its applications, vol 20. Oxford University Press, OxfordGoogle Scholar
  19. Cercignani C, Lampis M (1988) On the kinetic theory of a dense gas of rough spheres. J Stat Phys 53(3–4):655–672ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. Chakroborty P, Agrawal S, Vasishtha K (2004) Microscopic modeling of driver behavior in uninterrupted traffic flow. J Transp Eng 130(4):438–451CrossRefGoogle Scholar
  21. Chitour Y, Piccoli B (2005) Traffic circles and timing of traffic lights for cars flow. Discret Contin Dyn Syst Ser B 5(3):599–630CrossRefzbMATHMathSciNetGoogle Scholar
  22. Coclite GM, Garavello M, Piccoli B (2005) Traffic flow on a road network. SIAM J Math Anal (Electron) 36(6):1862–1886CrossRefzbMATHMathSciNetGoogle Scholar
  23. Colombo RM (2002a) A 2 × 2 hyperbolic traffic flow model, traffic flow – modelling and simulation. Math Comput Model 35(5–6):683–688CrossRefzbMATHMathSciNetGoogle Scholar
  24. Colombo RM (2002b) Hyperbolic phase transitions in traffic flow. SIAM J Appl Math 63(2):708–721CrossRefzbMATHMathSciNetGoogle Scholar
  25. Colombo RM, Garavello M (2006) A well posed Riemann problem for the p-system at a junction. Netw Heterog Media (Electron) 1(3):495–511CrossRefzbMATHMathSciNetGoogle Scholar
  26. Coscia V, Delitala M, Frasca P (2007) On the mathematical theory of vehicular traffic flow. II Discrete velocity kinetic models. Int J Non Linear Mech 42(3):411–421CrossRefzbMATHMathSciNetGoogle Scholar
  27. D’Apice C, Manzo R (2006) A fluid dynamic model for supply chains. Netw Heterog Media (Electron) 1(3):379–398CrossRefzbMATHMathSciNetGoogle Scholar
  28. D’Apice C, Piccoli B (2008) Vertex flow models for network traffic. Math Model Methods Appl Sci (submitted)Google Scholar
  29. D’Apice C, Manzo R, Piccoli B (2006) Packet flow on telecommunication networks. SIAM J Math Anal (Electron) 38(3):717–740CrossRefzbMATHMathSciNetGoogle Scholar
  30. Dafermos CM (2005) Hyperbolic conservation laws in continuum physics. Grundlehren der mathematischen Wissenschaften [Fundamental principles of mathematical sciences], vol 325, 2nd edn. Springer, BerlinGoogle Scholar
  31. Daganzo CF (1995) Requiem for second-order fluid approximation of traffic flow. Transp Res 29B(4):277–286CrossRefGoogle Scholar
  32. De Angelis E (1999) Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems. Math Comput Model 29(7):83–95CrossRefzbMATHGoogle Scholar
  33. Delitala M, Tosin A (2007) Mathematical modeling of vehicular traffic: a discrete kinetic theory approach. Math Model Methods Appl Sci 17(6):901–932CrossRefzbMATHMathSciNetGoogle Scholar
  34. Garavello M, Piccoli B (2006a) Traffic flow on networks. In: AIMS series on applied mathematics, vol 1. American Institute of Mathematical Sciences (AIMS), SpringfieldGoogle Scholar
  35. Garavello M, Piccoli B (2006b) Traffic flow on a road network using the Aw-Rascle model. Commun Partial Differ Equ 31(1–3):243–275CrossRefzbMATHMathSciNetGoogle Scholar
  36. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9:545–567CrossRefzbMATHMathSciNetGoogle Scholar
  37. Göttlich S, Herty M, Klar A (2006) Modelling and optimization of supply chains on complex networks. Commun Math Sci 4(2):315–330CrossRefzbMATHMathSciNetGoogle Scholar
  38. Greenberg JM (2001/02) Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J Appl Math (Electron) 62(3):729–745Google Scholar
  39. Günther M, Klar A, Materne T, Wegener R (2002) An explicitly solvable kinetic model for vehicular traffic and associated macroscopic equations. Math Comput Model 35(5–6):591–606CrossRefzbMATHGoogle Scholar
  40. Günther M, Klar A, Materne T, Wegener R (2003) Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations. SIAM J Appl Math 64(2):468–483zbMATHMathSciNetGoogle Scholar
  41. Helbing D (1998) From microscopic to macroscopic traffic models. In: A perspective look at nonlinear media. Lecture notes in physics, vol 503. Springer, Berlin, pp 122–139Google Scholar
  42. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73(4):1067–1141. doi:10.1103/RevModPhys.73.1067ADSCrossRefGoogle Scholar
  43. Herty M, Kirchner C, Moutari S (2006a) Multi-class traffic models on road networks. Commun Math Sci 4(3):591–608CrossRefzbMATHMathSciNetGoogle Scholar
  44. Herty M, Moutari S, Rascle M (2006b) Optimization criteria for modelling intersections of vehicular traffic flow. Netw Heterog Media (Electron) 1(2):275–294CrossRefzbMATHMathSciNetGoogle Scholar
  45. Holden H, Risebro NH (1995) A mathematical model of traffic flow on a network of unidirectional roads. SIAM J Math Anal 26(4):999–1017CrossRefzbMATHMathSciNetGoogle Scholar
  46. Hoogendoorn SP, Bovy PHL (2001) State-of-the-art of vehicular traffic flow modelling. J Syst Cont Eng 215(4):283–303Google Scholar
  47. Kerner BS (2000) Phase transitions in traffic flow. In: Helbing D, Hermann H, Schreckenberg M, Wolf DE (eds) Traffic and granular flow ‘99. Springer, New York, pp 253–283CrossRefGoogle Scholar
  48. Kerner BS (2004) The physics of traffic. Springer, BerlinCrossRefGoogle Scholar
  49. Kerner BS, Klenov SL (2002) A microscopic model for phase transitions in traffic flow. J Phys A 35(3):L31–L43ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. Klar A, Wegener R (1997) Enskog-like kinetic models for vehicular traffic. J Stat Phys 87(1–2):91–114ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. Klar A, Wegener R (2000) Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J Appl Math 60(5):1749–1766CrossRefzbMATHMathSciNetGoogle Scholar
  52. Klar A, Wegener R (2004) Traffic flow: models and numerics. In: Modeling and computational methods for kinetic equations. Modeling and simulation in science, engineering and technology. Birkhäuser, Boston, pp 219–258Google Scholar
  53. Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, New YorkCrossRefGoogle Scholar
  54. Lighthill MJ, Whitham GB (1955) On kinematic waves, II. A theory of traffic flow on long crowded roads. Proc Roy Soc Lond Ser A 229:317–345ADSCrossRefzbMATHMathSciNetGoogle Scholar
  55. Nagel K, Wagner P, Woesler R (2003) Still flowing: approaches to traffic flow and traffic jam modeling. Oper Res 51(5):681–710CrossRefzbMATHMathSciNetGoogle Scholar
  56. Paveri Fontana SL (1975) On Boltzmann-like treatments for traffic flow. Transp Res 9:225–235CrossRefGoogle Scholar
  57. Payne HJ (1971) Models of freeway traffic and control. Math Model Publ Syst Simul Counc Proc 28:51–61Google Scholar
  58. Prigogine I (1961) A Boltzmann-like approach to the statistical theory of traffic flow. In: Theory of traffic flow. Elsevier, Amsterdam, pp 158–164Google Scholar
  59. Prigogine I, Herman R (1971) Kinetic theory of vehicular traffic. American Elsevier Publishing, New YorkzbMATHGoogle Scholar
  60. Rascle M (2002) An improved macroscopic model of traffic flow: derivation and links with the Lighthill-Whitham model. Math Comput Model Traffic Flow Model Simul 35(5–6):581–590zbMATHMathSciNetGoogle Scholar
  61. Richards PI (1956) Shock waves on the highway. Oper Res 4:42–51CrossRefMathSciNetGoogle Scholar
  62. Serre D (1996a) Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves.] In: Systèmes de lois de conservation, I. Fondations [Foundations]. Diderot Editeur, ParisGoogle Scholar
  63. Serre D (1996b) Structures géométriques, oscillation et problémes mixtes. [Geometric structures, oscillation and mixed problems.] In: Systèmes de lois de conservation, II. Fondations. [Foundations.] Diderot Editeur, ParisGoogle Scholar
  64. Tosin A (2008) Discrete kinetic and stochastic game theory for vehicular traffic: modeling and mathematical problems. Ph D thesis, Department of Mathematics, Politecnico di TorinoGoogle Scholar
  65. Treiber M, Helbing D (2003) Memory effects in microscopic traffic models and wide scattering in flow-density data. Phys Rev E 68(4):046–119. doi:10.1103/PhysRevE.68.046119CrossRefGoogle Scholar
  66. Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824. doi:10.1103/PhysRevE.62.1805ADSCrossRefGoogle Scholar
  67. Treiber M, Kesting A, Helbing D (2006) Delays, inaccuracies and anticipation in microscopic traffic models. Physica A 360(1):71–88ADSCrossRefGoogle Scholar
  68. Villani C (2002) A review of mathematical topics in collisional kinetic theory. In: Handbook of mathematical fluid dynamics, vol I. North-Holland, Amsterdam, pp 71–305Google Scholar
  69. Wegener R, Klar A (1996) A kinetic model for vehicular traffic derived from a stochastic microscopic model. Transp Theory Stat Phys 25(7):785–798ADSCrossRefMathSciNetGoogle Scholar
  70. Whitham GB (1974) Linear and nonlinear waves. Wiley-Interscience, New YorkzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Istituto per le Applicazioni del Calcolo ‘Mauro Picone’Consiglio Nazionale delle RicercheRomeItaly