Skip to main content

Tunneling Through Quantum Dots with Discrete Symmetries

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 340 Accesses

Definition of the Subject

Electrons may be confined within a nano-size quantum box by various methods. The first example of such confinement was demonstrated in the studies of optical properties of semiconductor precipitates in glasses (Ekimov and Onushchenko 1984). Later on, such confinement was realized in planar quantum dots. These dots are fabricated in semiconductor heterostructures, where the electrons already confined in a two-dimensional layer between two semiconductors (usually GaAs/GaAlAs) are locked in a nano-size puddle by electrostatic potential created by electrodes superimposed on the heterostructure (see Kastner (1993), Read (1993) for a description of the early stage of the physics of quantum dots). QDs may be also prepared by means of colloidal synthesis (Bawendi et al. 1990), grown as self-assembled structures of semiconductor droplets on a strained surface of another semiconductor (Leonhard et al. 1993), etc. In particular, quantum dots may be fabricated in a form...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Discrete symmetry:

Group theory classifies all physical objects in accordance with their symmetry properties relative to symmetry transformations (rotations and translations) in space and time. These operations may be continuous or discrete. In the latter case, one speaks about discrete rotational or translational symmetry.

Dynamical symmetry:

Dynamical symmetry characterizes not only the eigenstates of a Hamiltonian, but also the symmetry of transition between the states belonging to different irreducible representation of the symmetry group of the Hamiltonian under external dynamical perturbation. Dynamical symmetry may be continuous and discrete or combine both types of symmetry operations.

Kondo effect:

Kondo effect is the many-particle phenomenon which arises in magnetically doped metals due to exchange scattering of metallic electrons on localized magnetic moments of impurities. Multiple electron scattering processes result in dynamical screening of impurity magnetic moment. As a result, impurity-related electrical resistivity has a minimum at some temperature and reaches the unitarity limit at T → 0. This limit corresponds to maximum backward electron scattering. Kondo effect exists also in tunneling through small QDs. In this case, the unitarity limit corresponds to maximum tunnel transparency of QD.

Quantum dot:

Quantum dot (QD) is an element of artificial nanostructures. It arises in a situation when a finite number of electrons are confined in a puddle of 100–102 nm size either by means of external electrical potential imposed on semiconductor heterostructure or in a process of formation of nonequilibrium self-assembled structures. The electron wavelength in a QD is comparable with its size. As a result, all energy levels are spatially quantized like in atoms or molecules. Quantum systems with fully quantized energy levels are defined as zero-dimensional nano-objects. Complex quantum dots consist of several QDs organized in linear or ring structures.

Quantum tunneling:

Quantum tunneling of electrons through potential barriers arises at low temperatures, where all overbarrier activation processes are frozen. In nanostructures, this type of transport is realized on the interfaces between different materials forming nanostructure or in especially designed tunneling channels.

Bibliography

Primary Literature

  • Aono T (2007) Two-impurity Kondo problem under Aharonov-Bohm and Aharonov-Casher effects. Phys Rev B 76:073304

    Article  ADS  Google Scholar 

  • Babic B, Kontos T, Schonenberger C (2004) Kondo effect in carbon nanotubes at half filling. Phys Rev B 70:235419

    Article  ADS  Google Scholar 

  • Babic B, Schonenberger C (2004) Observation of Fano resonances in single-wall carbon nanotubes. Phys Rev B 70:195408

    Article  ADS  Google Scholar 

  • Bawendi MG et al (1990) Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65:1623–1626

    Article  ADS  Google Scholar 

  • Bergeret FS et al (2006) Interplay between Josephson effect and magnetic interactions in double quantum dots. Phys Rev B 74:132505

    Article  ADS  Google Scholar 

  • Bimberg D, Grundman M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, New York

    Google Scholar 

  • Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C Solid State Phys 17:6039–6045

    Article  ADS  Google Scholar 

  • Craig NJ et al (2004) Tunable nonlocal spin control in coupled-quantum-dot system. Science 304:565–567

    Article  ADS  Google Scholar 

  • Delgado F et al (2007) Theory of spin, electronic and transport properties of the lateral triplet quantum dot molecule in a magnetic field. Phys Rev B 76:115332

    Article  ADS  Google Scholar 

  • Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett 40:1136–1139

    ADS  Google Scholar 

  • Eto M (2001) Mean-field theory of the Kondo effect in quantum dots with an even number of electrons. Phys Rev B 64:085322

    Article  ADS  Google Scholar 

  • Eto M (2005) Enhancement of Kondo effect in multilevel quantum dots. J Phys Soc Jpn 74:95–102

    Article  ADS  MATH  Google Scholar 

  • Fulde P (1995) Electron correlations in molecules and solids, Chap 12, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Garg A (1993) Topologically quenched tunnel splitting in spin systems without Kramers degeneracy. Europhys Lett 22:205–210

    Article  ADS  Google Scholar 

  • Glazman LI, Raikh ME (1988) Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett 47:452–455

    ADS  Google Scholar 

  • Guadreau L et al (2006) Stability diagram of a few-electron triple dot. Phys Rev Lett 97:036807

    Article  ADS  Google Scholar 

  • Nojiri H, Ishikawa E, Yamase T (2005) Effect of spin chirality on magnetization in triangular rings. Prog Theor Phys Suppl 159:292–296

    Article  ADS  Google Scholar 

  • Hofmann F et al (1995) Single electron switching in a parallel quantum dot. Phys Rev B 51:13872–13875

    Article  ADS  Google Scholar 

  • Hofstatter W, Schoeller H (2002) Quantum phase transitions in a multilevel dot. Phys Rev Lett 88:016803

    Article  ADS  Google Scholar 

  • Imamura H, Bruno P, Utsumi Y (2004) Twisted exchange interaction between localized spins embedded in a one- and two-dimensional electron gas with Rashba spin-orbit coupling. Phys Rev B 69:121303

    Article  ADS  Google Scholar 

  • Izumida W, Sakai O, Shimizu Y (1997) Many body effects on electron tunneling through quantum dots in and Aharonov-Bohm circuit. J Phys Soc Jpn 66:717–726

    Article  ADS  Google Scholar 

  • Jamneala T, Madhavan V, Crommie MF (2001) Kondo response of a single antiferromagnetic chromium trimer. Phys Rev Lett 87:256804

    Article  ADS  Google Scholar 

  • Joault B, Santoro G, Tagliacozzo A (2000) Sequential magnetotunneling in a vertical quantum dot tuned at the crossing to higher spin states. Phys Rev B 61:10242–10246

    Article  ADS  Google Scholar 

  • Kang K et al (2001) Anti-Kondo resonance in transport through a quantum wire with a side coupled quantum dot. Phys Rev B 63:113304

    Article  ADS  Google Scholar 

  • Kastner MA (1993) Artificial atoms. Phys Today 46:24–31

    Article  ADS  Google Scholar 

  • Kikoin K, Avishai Y (2001) Kondo tunneling through real and artificial molecules. Phys Rev Lett 86:2090–2093

    Article  ADS  Google Scholar 

  • Kikoin K, Avishai Y (2002) Kondo singlet versus Zhang-Rice and Heitler-London singlets. Physica B 312–313:165–166

    Article  Google Scholar 

  • Kikoin K, Avishai Y, Kiselev MN (2006) Dynamical symmetries in nanophysics. In: Nanophysics, nanoclusters and nanodevices. Nova Publishers, New York, pp 39–86

    Google Scholar 

  • Kim TS, Hershfield S (2001) Suppression of current in transport through parallel double quantum dots. Phys Rev B 63:245326

    Article  ADS  Google Scholar 

  • Kiselev MN, Kikoin K, Molenkamp LW (2003) Resonance Kondo tunneling through a double quantum dot at finite bias. Phys Rev B 68:155323

    Article  ADS  Google Scholar 

  • Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32:37–49

    Article  ADS  Google Scholar 

  • Kowenhoven LP, Austing DG, Tarucha S (2001) Few-electron quantum dots. Rep Prog Phys 64:701–736

    Article  ADS  Google Scholar 

  • Kuzmenko T, Kikoin K, Avishai Y (2004) Kondo effect in systems with dynamical symmetries. Phys Rev B 69:195109

    Article  ADS  Google Scholar 

  • Kuzmenko T, Kikoin K, Avishai Y (2006a) Magnetically tunable Kondo-Aharonov-Bohm effect in triangular quantum dot. Phys Rev Lett 96:046601

    Article  ADS  Google Scholar 

  • Kuzmenko T, Kikoin K, Avishai Y (2006b) Tunneling through triple quantum dots with mirror symmetry. Phys Rev B 73:235310

    Article  ADS  Google Scholar 

  • Leonhard D et al (1993) Direct formation of quantum-size dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl Phys Lett 63:3203–3205

    Article  ADS  Google Scholar 

  • Loss D, DiVincenco DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126

    Article  ADS  Google Scholar 

  • Makarovski A et al (2007) SU(4) and SU(2) Kondo effects in carbon nanotube quantum dots. Phys Rev B 75:241407

    Article  ADS  Google Scholar 

  • Matveev KA, Larkin AI (1992) Interaction-induced threshold singularities in tunneling via localized levels. Phys Rev B 46:15337–15347

    Article  ADS  Google Scholar 

  • Mitra A, Aleiner I, Millis AJ (2004) Phonon effects in molecular transistors: quantum and classical treatment. Phys Rev B 69:245302

    Article  ADS  Google Scholar 

  • Molenkamp LW et al (1995) Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys Rev Lett 75:4282–4285

    Article  ADS  Google Scholar 

  • Ng TK, Lee PA (1988) On-site Coulomb repulsion and resonant tunneling. Phys Rev Lett 61:1768–1771

    Article  ADS  Google Scholar 

  • Nugard J et al (2000) Kondo physics in carbon nanotubes. Nature 408:342–345

    Article  ADS  Google Scholar 

  • Paaske J et al (2006) Nonequilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat Phys 2:460–464

    Article  Google Scholar 

  • Park H et al (2000) Nanomechanical oscillations in a single- C60 transistor. Nature 407:57–60

    Article  ADS  Google Scholar 

  • Pasupathy AN et al (2005) Vibration assisted electron tunneling in C140 single electron transistors. Nano Lett 5:203–207

    Article  ADS  Google Scholar 

  • Plihal M, Gadzuk JW (2001) Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances. Phys Rev B 63:085404

    Article  ADS  Google Scholar 

  • Pustilnik M, Avishai Y, Kikoin (2000) Quantum dots with even number of electrons: Kondo effect in a finite magnetic field. Phys Rev Lett 84:1756–1759

    Article  ADS  Google Scholar 

  • Pustilnik M, Glazman LI (2001) Kondo effect induced by magnetic field. Phys Rev B 64:45328

    Article  ADS  Google Scholar 

  • Rashba EI (2006) Modern trends in semiconductor spintronics. In: Ivanov AL, Tikhodeev SG (eds) Problems of condensed matter physics. Clarendon Press, Oxford, pp 188–198

    Google Scholar 

  • Read MA (1993) Quantum dots. Sci Am 268:118–123

    Article  ADS  Google Scholar 

  • Saraga DS, Loss D (2003) Spin-entangled currents created by a triple quantum dot. Phys Rev Lett 90:166803

    Article  ADS  Google Scholar 

  • Scarola VW, Das Sarma S (2005) Exchange gate in solid-state spin quantum computation: the applicability of the Heisenberg model. Phys Rev A 71:032340

    Article  ADS  Google Scholar 

  • Tans S et al (1998) Electron-electron correlations in carbon nanotubes. Nature 394:761–764

    Article  ADS  Google Scholar 

  • Teichert C (2002) Self-organization of nanostructures in semiconductor heteroepitaxy. Phys Rep 365:335–432

    Article  ADS  Google Scholar 

  • Vidan A et al (2004) Triple quantum dot charging rectifier. Appl Phys Lett 85:3602–3604

    Article  ADS  Google Scholar 

  • Waldmann O, Zhao L, Thompson LK (2002) Field-dependent anisotropy change in a supramolecular Mn(II)-[3 × 3] grid. Phys Rev Lett 88:066401

    Article  ADS  Google Scholar 

  • Wegewijs M et al (2007) Magneto-transport through single-molecule magnets: Kondo peaks, zero-bias dips, molecular symmetry and Berry’s phase. New J Phys 9:344

    Article  Google Scholar 

  • Yu LH, Natelson D (2004) The Kondo effect in C60 single- molecule transistors. Nano Lett 4:79–83

    Article  ADS  Google Scholar 

Books and Reviews

  • Cuniberti G, Fagas G, Richter K (eds) (2005) Molecular electronics. Lecture notes in physics, vol 680. Springer, New York

    Google Scholar 

  • Englefield MJ (1972) Group theory and the Coulomb problem. Wiley, New York

    MATH  Google Scholar 

  • Kouwenhoven LP, Glazman LI (2001) Revival of the Kondo effect. Phys World 14:33–38

    Google Scholar 

  • Natelson D (2006) Handbook of organic electronics and photonics. American Scientific, Valencia

    Google Scholar 

  • Sachrajda PH, Ciorga M (2003) Nano-spintronics with lateral quantum dots. Kluwer, Boston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yshai Avishai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Avishai, Y., Kikoin, K. (2013). Tunneling Through Quantum Dots with Discrete Symmetries. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-3-642-27737-5_571-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_571-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics