Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Tunneling Through Quantum Dots with Discrete Symmetries

  • Yshai Avishai
  • Konstantin Kikoin
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_571-2

Definition of the Subject

Electrons may be confined within a nano-size quantum box by various methods. The first example of such confinement was demonstrated in the studies of optical properties of semiconductor precipitates in glasses (Ekimov and Onushchenko 1984). Later on, such confinement was realized in planar quantum dots. These dots are fabricated in semiconductor heterostructures, where the electrons already confined in a two-dimensional layer between two semiconductors (usually GaAs/GaAlAs) are locked in a nano-size puddle by electrostatic potential created by electrodes superimposed on the heterostructure (see Kastner (1993), Read (1993) for a description of the early stage of the physics of quantum dots). QDs may be also prepared by means of colloidal synthesis (Bawendi et al. 1990), grown as self-assembled structures of semiconductor droplets on a strained surface of another semiconductor (Leonhard et al. 1993), etc. In particular, quantum dots may be fabricated in a form...


Discrete Symmetry Dynamical Symmetry Tunnel Conductance Kondo Effect Charge Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


Primary Literature

  1. Aono T (2007) Two-impurity Kondo problem under Aharonov-Bohm and Aharonov-Casher effects. Phys Rev B 76:073304ADSCrossRefGoogle Scholar
  2. Babic B, Kontos T, Schonenberger C (2004) Kondo effect in carbon nanotubes at half filling. Phys Rev B 70:235419ADSCrossRefGoogle Scholar
  3. Babic B, Schonenberger C (2004) Observation of Fano resonances in single-wall carbon nanotubes. Phys Rev B 70:195408ADSCrossRefGoogle Scholar
  4. Bawendi MG et al (1990) Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Phys Rev Lett 65:1623–1626ADSCrossRefGoogle Scholar
  5. Bergeret FS et al (2006) Interplay between Josephson effect and magnetic interactions in double quantum dots. Phys Rev B 74:132505ADSCrossRefGoogle Scholar
  6. Bimberg D, Grundman M, Ledentsov NN (1999) Quantum dot heterostructures. Wiley, New YorkGoogle Scholar
  7. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C Solid State Phys 17:6039–6045ADSCrossRefGoogle Scholar
  8. Craig NJ et al (2004) Tunable nonlocal spin control in coupled-quantum-dot system. Science 304:565–567ADSCrossRefGoogle Scholar
  9. Delgado F et al (2007) Theory of spin, electronic and transport properties of the lateral triplet quantum dot molecule in a magnetic field. Phys Rev B 76:115332ADSCrossRefGoogle Scholar
  10. Ekimov AI, Onushchenko AA (1984) Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett 40:1136–1139ADSGoogle Scholar
  11. Eto M (2001) Mean-field theory of the Kondo effect in quantum dots with an even number of electrons. Phys Rev B 64:085322ADSCrossRefGoogle Scholar
  12. Eto M (2005) Enhancement of Kondo effect in multilevel quantum dots. J Phys Soc Jpn 74:95–102ADSCrossRefzbMATHGoogle Scholar
  13. Fulde P (1995) Electron correlations in molecules and solids, Chap 12, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  14. Garg A (1993) Topologically quenched tunnel splitting in spin systems without Kramers degeneracy. Europhys Lett 22:205–210ADSCrossRefGoogle Scholar
  15. Glazman LI, Raikh ME (1988) Resonant Kondo transparency of a barrier with quasilocal impurity states. JETP Lett 47:452–455ADSGoogle Scholar
  16. Guadreau L et al (2006) Stability diagram of a few-electron triple dot. Phys Rev Lett 97:036807ADSCrossRefGoogle Scholar
  17. Nojiri H, Ishikawa E, Yamase T (2005) Effect of spin chirality on magnetization in triangular rings. Prog Theor Phys Suppl 159:292–296ADSCrossRefGoogle Scholar
  18. Hofmann F et al (1995) Single electron switching in a parallel quantum dot. Phys Rev B 51:13872–13875ADSCrossRefGoogle Scholar
  19. Hofstatter W, Schoeller H (2002) Quantum phase transitions in a multilevel dot. Phys Rev Lett 88:016803ADSCrossRefGoogle Scholar
  20. Imamura H, Bruno P, Utsumi Y (2004) Twisted exchange interaction between localized spins embedded in a one- and two-dimensional electron gas with Rashba spin-orbit coupling. Phys Rev B 69:121303ADSCrossRefGoogle Scholar
  21. Izumida W, Sakai O, Shimizu Y (1997) Many body effects on electron tunneling through quantum dots in and Aharonov-Bohm circuit. J Phys Soc Jpn 66:717–726ADSCrossRefGoogle Scholar
  22. Jamneala T, Madhavan V, Crommie MF (2001) Kondo response of a single antiferromagnetic chromium trimer. Phys Rev Lett 87:256804ADSCrossRefGoogle Scholar
  23. Joault B, Santoro G, Tagliacozzo A (2000) Sequential magnetotunneling in a vertical quantum dot tuned at the crossing to higher spin states. Phys Rev B 61:10242–10246ADSCrossRefGoogle Scholar
  24. Kang K et al (2001) Anti-Kondo resonance in transport through a quantum wire with a side coupled quantum dot. Phys Rev B 63:113304ADSCrossRefGoogle Scholar
  25. Kastner MA (1993) Artificial atoms. Phys Today 46:24–31ADSCrossRefGoogle Scholar
  26. Kikoin K, Avishai Y (2001) Kondo tunneling through real and artificial molecules. Phys Rev Lett 86:2090–2093ADSCrossRefGoogle Scholar
  27. Kikoin K, Avishai Y (2002) Kondo singlet versus Zhang-Rice and Heitler-London singlets. Physica B 312–313:165–166CrossRefGoogle Scholar
  28. Kikoin K, Avishai Y, Kiselev MN (2006) Dynamical symmetries in nanophysics. In: Nanophysics, nanoclusters and nanodevices. Nova Publishers, New York, pp 39–86Google Scholar
  29. Kim TS, Hershfield S (2001) Suppression of current in transport through parallel double quantum dots. Phys Rev B 63:245326ADSCrossRefGoogle Scholar
  30. Kiselev MN, Kikoin K, Molenkamp LW (2003) Resonance Kondo tunneling through a double quantum dot at finite bias. Phys Rev B 68:155323ADSCrossRefGoogle Scholar
  31. Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32:37–49ADSCrossRefGoogle Scholar
  32. Kowenhoven LP, Austing DG, Tarucha S (2001) Few-electron quantum dots. Rep Prog Phys 64:701–736ADSCrossRefGoogle Scholar
  33. Kuzmenko T, Kikoin K, Avishai Y (2004) Kondo effect in systems with dynamical symmetries. Phys Rev B 69:195109ADSCrossRefGoogle Scholar
  34. Kuzmenko T, Kikoin K, Avishai Y (2006a) Magnetically tunable Kondo-Aharonov-Bohm effect in triangular quantum dot. Phys Rev Lett 96:046601ADSCrossRefGoogle Scholar
  35. Kuzmenko T, Kikoin K, Avishai Y (2006b) Tunneling through triple quantum dots with mirror symmetry. Phys Rev B 73:235310ADSCrossRefGoogle Scholar
  36. Leonhard D et al (1993) Direct formation of quantum-size dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl Phys Lett 63:3203–3205ADSCrossRefGoogle Scholar
  37. Loss D, DiVincenco DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126ADSCrossRefGoogle Scholar
  38. Makarovski A et al (2007) SU(4) and SU(2) Kondo effects in carbon nanotube quantum dots. Phys Rev B 75:241407ADSCrossRefGoogle Scholar
  39. Matveev KA, Larkin AI (1992) Interaction-induced threshold singularities in tunneling via localized levels. Phys Rev B 46:15337–15347ADSCrossRefGoogle Scholar
  40. Mitra A, Aleiner I, Millis AJ (2004) Phonon effects in molecular transistors: quantum and classical treatment. Phys Rev B 69:245302ADSCrossRefGoogle Scholar
  41. Molenkamp LW et al (1995) Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot. Phys Rev Lett 75:4282–4285ADSCrossRefGoogle Scholar
  42. Ng TK, Lee PA (1988) On-site Coulomb repulsion and resonant tunneling. Phys Rev Lett 61:1768–1771ADSCrossRefGoogle Scholar
  43. Nugard J et al (2000) Kondo physics in carbon nanotubes. Nature 408:342–345ADSCrossRefGoogle Scholar
  44. Paaske J et al (2006) Nonequilibrium singlet-triplet Kondo effect in carbon nanotubes. Nat Phys 2:460–464CrossRefGoogle Scholar
  45. Park H et al (2000) Nanomechanical oscillations in a single- C60 transistor. Nature 407:57–60ADSCrossRefGoogle Scholar
  46. Pasupathy AN et al (2005) Vibration assisted electron tunneling in C140 single electron transistors. Nano Lett 5:203–207ADSCrossRefGoogle Scholar
  47. Plihal M, Gadzuk JW (2001) Nonequilibrium theory of scanning tunneling spectroscopy via adsorbate resonances. Phys Rev B 63:085404ADSCrossRefGoogle Scholar
  48. Pustilnik M, Avishai Y, Kikoin (2000) Quantum dots with even number of electrons: Kondo effect in a finite magnetic field. Phys Rev Lett 84:1756–1759ADSCrossRefGoogle Scholar
  49. Pustilnik M, Glazman LI (2001) Kondo effect induced by magnetic field. Phys Rev B 64:45328ADSCrossRefGoogle Scholar
  50. Rashba EI (2006) Modern trends in semiconductor spintronics. In: Ivanov AL, Tikhodeev SG (eds) Problems of condensed matter physics. Clarendon Press, Oxford, pp 188–198Google Scholar
  51. Read MA (1993) Quantum dots. Sci Am 268:118–123ADSCrossRefGoogle Scholar
  52. Saraga DS, Loss D (2003) Spin-entangled currents created by a triple quantum dot. Phys Rev Lett 90:166803ADSCrossRefGoogle Scholar
  53. Scarola VW, Das Sarma S (2005) Exchange gate in solid-state spin quantum computation: the applicability of the Heisenberg model. Phys Rev A 71:032340ADSCrossRefGoogle Scholar
  54. Tans S et al (1998) Electron-electron correlations in carbon nanotubes. Nature 394:761–764ADSCrossRefGoogle Scholar
  55. Teichert C (2002) Self-organization of nanostructures in semiconductor heteroepitaxy. Phys Rep 365:335–432ADSCrossRefGoogle Scholar
  56. Vidan A et al (2004) Triple quantum dot charging rectifier. Appl Phys Lett 85:3602–3604ADSCrossRefGoogle Scholar
  57. Waldmann O, Zhao L, Thompson LK (2002) Field-dependent anisotropy change in a supramolecular Mn(II)-[3 × 3] grid. Phys Rev Lett 88:066401ADSCrossRefGoogle Scholar
  58. Wegewijs M et al (2007) Magneto-transport through single-molecule magnets: Kondo peaks, zero-bias dips, molecular symmetry and Berry’s phase. New J Phys 9:344CrossRefGoogle Scholar
  59. Yu LH, Natelson D (2004) The Kondo effect in C60 single- molecule transistors. Nano Lett 4:79–83ADSCrossRefGoogle Scholar

Books and Reviews

  1. Cuniberti G, Fagas G, Richter K (eds) (2005) Molecular electronics. Lecture notes in physics, vol 680. Springer, New YorkGoogle Scholar
  2. Englefield MJ (1972) Group theory and the Coulomb problem. Wiley, New YorkzbMATHGoogle Scholar
  3. Kouwenhoven LP, Glazman LI (2001) Revival of the Kondo effect. Phys World 14:33–38Google Scholar
  4. Natelson D (2006) Handbook of organic electronics and photonics. American Scientific, ValenciaGoogle Scholar
  5. Sachrajda PH, Ciorga M (2003) Nano-spintronics with lateral quantum dots. Kluwer, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Physics Department and Ilse Katz Institute for NanotechnologyBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of PhysicsTel-Aviv UniversityTel-AvivIsrael