Skip to main content

System Dynamics Modeling: Validation for Quality Assurance

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Glossary

Model/model system :

A model is an abstract representation of a concrete (“real”) system. Models can be descriptive or prescriptive (normative). Their functions can be to enable explanation, anticipation, or design. A distinction used in this contribution is between causal and noncausal models, with System Dynamics models being of the former type. The term model system is used to stress the systemic character of a model; this serves to identify it as an organized whole of variables and relationships, on the one hand, and to distinguish it from the real system which is to be modeled, on the other.

Model validity :

A model’s property of reflecting adequately the system modeled. Validity is the main feature of model quality. It is a matter of degree, not a dichotomized property.

Model purpose :

The goal for which a model is designed or the function it is supposed to fulfill. The model purpose adheres closely to the end-model user or model owner. Model purpose is the criterion for...

This is a preview of subscription content, log in via an institution.

Bibliography

Primary Literature

  • Barlas Y (1990) An autocorrelation function test for output validation. Simulation 55(1):7–16

    Article  Google Scholar 

  • Barlas Y (1996) Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev 12(3):183–210

    Article  Google Scholar 

  • Barlas Y (2006) Model validity and testing in system dynamics: two specific tools. Paper presented at the 24th international conference of the system dynamics society, Nijmegen

    Google Scholar 

  • Barlas Y, Carpenter S (1990) Philosophical roots of model validity – two paradigms. Syst Dyn Rev 6(2):148–166

    Article  Google Scholar 

  • Coyle G, Exelby D (2000) The validation of commercial system dynamics models. Syst Dyn Rev 16(1):27–41

    Article  Google Scholar 

  • Dangerfield B (2014) Systems thinking and system dynamics: a primer. In: Brailsford S, Churilov L et al (eds) Discrete-event simulation and system dynamics for management decision making. Wiley, Chichester, pp 26–51

    Chapter  Google Scholar 

  • Feyerabend P (1993) Against method, 3rd edn. Verso, London

    Google Scholar 

  • Forrester JW (1961) Industrial dynamics. MIT Press, Cambridge, MA

    Google Scholar 

  • Forrester JW, Senge PM (1980) Test for building confidence in system dynamics models. In: Legasto AA Jr, Forrester JW, Lyneis JM (eds) System dynamics. North-Holland Publishing Company, Amsterdam, pp 209–228

    Google Scholar 

  • Graham AK (1980) Parameter estimation in system dynamics. In: Randers J (ed) Elements of the system dynamics method. MIT Press, Cambridge, MA, pp 143–161

    Google Scholar 

  • Groesser SN, Schwaninger M (2012) Contributions to model validation: hierarchy, process, and cessation. Syst Dyn Rev 28(2):157–181

    Article  Google Scholar 

  • Heracleous L (2006) Discourse, interpretation, organization. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • James W (1987) Writings 1902–1910. Library of America, New York

    Google Scholar 

  • Kampmann CE, Oliva R (2018) System dynamics: analytical methods for structural dominance analysis. In: Encyclopaedia of complexity and systems science. Springer, New York/London/Berlin

    Google Scholar 

  • Kuhn T (1996) The structure of scientific revolutions, 3rd edn. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lacey AR (1996) A dictionary of philosophy, 3rd edn. Barnes and Noble, New York

    Google Scholar 

  • Lane DC (1995) The folding star: a comparative reframing and extension of validity concepts in system dynamics. In: Simada T, Saeed K (eds) Proceedings of 1995 international system dynamics conference, 30 July–4 Aug, vol I. System Dynamics Society, Lincoln, pp 111–130

    Google Scholar 

  • Mass NJ (1975) Economic cycles: an analysis of underlying causes. Productivity Press, Cambridge, MA

    Google Scholar 

  • Mattheij RMM, Rienstra SW, ten Thije Boonkkamp JHM (2005) Partial differential equations: modeling, analysis, computation. Society for Industrial & Applied Mathematics (SIAM), Eindhoven

    Book  Google Scholar 

  • Petersen DW, Eberlein RL (1994) Understanding models with Vensim. In: JDW M, Sterman JD (eds) Modeling for learning organiziations. Productivity Press, Portland, pp 339–358

    Google Scholar 

  • Phillips LD (2007) Decision conferencing. In: Edwards W, Miles RF, von Winterfeldt D (eds) Advances in decision analysis. From foundations to applications. Cambridge University Press, Cambridge, pp 375–399

    Chapter  Google Scholar 

  • Popper KR (1959) The logic of scientific discovery. Basic Books, New York (latest edition: 2002, Routledge, London)

    MATH  Google Scholar 

  • Popper KR (1972) Objective knowledge: an evolutionary approach. Clarendon Press, Oxford

    Google Scholar 

  • Rapoport A (1954) Operational philosophy. Integrating knowledge and action. Harper, New York

    Google Scholar 

  • Richardson GP (1995, originally published in 1984) Loop polarity, loop dominance, and the concept of dominant polarity. Syst Dyn Rev 11(1): 67–88

    Google Scholar 

  • Schwaninger M (2010) Model-based management (MBM): a vital prerequisite for organizational viability. Kybernetes 39(9/10):1419–1428

    Article  Google Scholar 

  • Schwaninger M, Groesser SN (2008) Model-based theory-building with system dynamics. Syst Res Behav Sci 25:1–19

    Article  Google Scholar 

  • Seiffert H, Radnitzky G (1994) Handlexikon der Wissenschaftstheorie, 2nd edn. DTV Wissenschaft, Munich

    Google Scholar 

  • Smith VL (2008) Rationality in economics: constructivist and ecological forms. Cambridge University Press, Cambridge

    Google Scholar 

  • Snabe B, Grössler A (2006) System dynamics modelling for strategy implementation – case study and issues. Syst Res Behav Sci 23(4):467–481

    Article  Google Scholar 

  • Sterman JD (1984) Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica 10(2):51–66

    Google Scholar 

  • Sterman JD (1989) Misperceptions of feedback in dynamic decision making. Organ Behav Hum Decis Process 43(3):301–335

    Article  Google Scholar 

  • Sterman JD (2000) Business dynamics. Systems thinking and modeling for a complex world. Irwin/McGraw-Hill, Boston

    Google Scholar 

  • Struben J, Sterman J, Keith D (2015) Parameter estimation through maximum likelihood and bootstrapping methods. In: Rahmandad H, Oliva R, Osgood ND (eds) Analytical methods for dynamic modelers. MIT Press, Cambridge, MA, pp 3–38

    Google Scholar 

  • Taleb NN (2007) The black swan. The impact of the highly improbable. Random House, New York

    Google Scholar 

  • Vennix JAM (1996) Group model building: facilitating team learning using system dynamics. Wiley, Chichester

    Google Scholar 

  • von Foerster H (1984) Observing systems, 2nd edn. Intersystems Publications, Seaside

    Google Scholar 

  • von Glasersfeld E (1991) Abschied von der Objektivität. In: Watzlawick P, Krieg P (eds) Das Auge des Betrachters. Piper, Munich, pp 17–30

    Google Scholar 

Books and Reviews

  • Finlay PN (1997) Validity of decision support systems: towards a validation methodology. Syst Res Behav Sci 14(3):169–182

    Article  Google Scholar 

  • Forrester JW (1961) Industrial dynamics. MIT Press, Cambridge, MA

    Google Scholar 

  • Law AM (2007) Simulation modeling and analysis, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Legasto AA, Forrester JW, Lyneis JM (eds) (1980) System dynamics. North-Holland, Amsterdam

    Google Scholar 

  • Morecroft J (2007) Strategic modelling and business dynamics: a feedback systems approach. Wiley, Chichester

    Google Scholar 

  • Sargent RG (2004) Validation and verification of simulation models. In: Ingalls RG, Rossetti MD, Smith JS, Peters BA (eds) Proceedings of the 2004 winter simulation conference. ACM-Association for Computing Machinery, Washington, DC, pp 17–28

    Google Scholar 

  • Schwaninger M (2011) System dynamics in the evolution of the systems approach. In: Meyers RA (ed) Complex systems in finance and econometrics, vol 2. Springer, New York, pp 753–766

    Google Scholar 

  • Sterman JD (2000) Business dynamics. Systems thinking and modeling for a complex world. Irwing/Mc Graw-Hill, Boston

    Google Scholar 

  • Warren K (2008) Strategic management dynamics. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Schwaninger .

Editor information

Editors and Affiliations

Appendix: Overview of the Tests Described in This Entry

Appendix: Overview of the Tests Described in This Entry

  • Tests of Model-Related Context

    • Test of Model Framing

    • Issue Identification Test

    • Adequacy of Methodology Test

    • System Configuration Test

    • System Improvement Test

  • Tests of Model Structure

    • Direct Structure Tests

      • Structure Examination Test

      • Parameter Examination Test

      • Direct Extreme Condition Test

      • Boundary Adequacy Structure Test

      • Dimensional Consistency Test

    • Indirect Structure Tests

      • Mass-Balance Check

      • Indirect Extreme Condition Test

      • Behavior Sensitivity Test

      • Integration Error Test

      • Boundary Adequacy Behavior Test/Boundary Adequacy Policy Test

      • Loop Dominance Test

  • Tests of Model Behavior

    • Behavior Reproduction Tests

      • Symptom Generation Test

      • Frequency Generation and Phase Relationship Test

      • Modified Behavior Test

      • Multiple Modes Test

      • Behavior Characteristic Test

    • Behavior Anticipation Tests

      • Pattern Anticipation Test

      • Event Anticipation Test

    • Behavior Anomaly Test

    • Family Member Test

    • Surprise Behavior Test

    • Turing Test

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schwaninger, M., Groesser, S. (2018). System Dynamics Modeling: Validation for Quality Assurance. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_540-4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_540-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    System Dynamics Modeling: Validation for Quality Assurance
    Published:
    25 September 2018

    DOI: https://doi.org/10.1007/978-3-642-27737-5_540-4

  2. Original

    System Dynamics Modeling: Validation for Quality Assurance
    Published:
    03 December 2016

    DOI: https://doi.org/10.1007/978-3-642-27737-5_540-3