Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Seismic Wave Propagation in Media with Complex Geometries, Simulation of

  • Heiner Igel
  • Martin Käser
  • Marco Stupazzini
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_468-2

Definition of the Subject

Seismology is the science that aims at understanding the Earth’s interior and its seismic sources from measurements of vibrations of the solid Earth. The resulting images of the physical properties of internal structures and the spatiotemporal behavior of earthquake rupture processes are prerequisites to understanding the dynamic evolution of our planet and the physics of earthquakes. One of the key ingredients to obtain these images is the calculation of synthetic (or theoretical) seismograms for given earthquake sources and internal structures. These synthetic seismograms can then be compared quantitatively with observations and acceptable models be searched for using the theory of inverse problems. The methodologies to calculate synthetic seismograms have evolved dramatically over the past decades in parallel with the evolution of computational resources and the ever-increasing volumes of permanent seismic observations in global and regional seismic...

Keywords

Discontinuous Galerkin Spectral Element Tetrahedral Mesh Spectral Element Method Seismic Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We would like to acknowledge partial support toward this research from the European Union (SPICE RTN, QUEST ITN, VERCE), the German Research Foundation (Emmy Noether Programme), the Bavarian Government (KONWIHR, graduate college THESIS, BaCaTec), and MunichRe. We would also like to thank J. Tromp for supporting MS’s visit to Caltech. We also thank two anonymous reviewers for constructive comments on the manuscript.

Bibliography

Primary Literature

  1. Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite-difference methods. Bull Seism Soc Am 58:367–398Google Scholar
  2. Antonietti PF, Mazzieri I, Quarteroni A, Rapetti F (2012) Non-conforming high order approximations of the elastodynamics equation. Comput Meth Appl Mech Eng 209–212:212–238MathSciNetGoogle Scholar
  3. Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Num Anal 39(5):1749–1779MathSciNetzbMATHGoogle Scholar
  4. Benzley SE, Harris NJ, Scott M, Borden M, Owen SJ (2005) Conformal refinement and coarsening of unstructured hexahedral meshes. J Comput Inf Sci Eng 5:330–337Google Scholar
  5. Bey J (1995) Tetrahedral grid refinement. Computing 55:355–378MathSciNetzbMATHGoogle Scholar
  6. Bielak J, Loukakis K, Hisada Y, Yoshimura C (2003) Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: theory. Bull Seism Soc Am 93:817–824MathSciNetGoogle Scholar
  7. Bonilla LF, Archuleta RJ, Lavallée D (2005) Hysteretic and dilatant behavior of cohesionless soils and their effects on nonlinear site response: field data observations and modelling. Bull Seism Soc Am 95(6):2373–2395Google Scholar
  8. Boore D (1972) Finite-difference methods for seismic wave propagation in heterogeneous materials. In: Bolt BA (ed) Methods in computational physics, vol 11. Academic, New YorkGoogle Scholar
  9. Braun J, Sambridge MS (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660ADSGoogle Scholar
  10. Bunge HP, Tromp J (2003) Supercomputing moves to universities and makes possible new ways to organize computational research. EOS 84(4):30, 33Google Scholar
  11. Carcione JM, Wang J-P (1993) A Chebyshev collocation method for the elastodynamic equation in generalised coordinates. Comp Fluid Dyn 2:269–290Google Scholar
  12. Carcione JM, Kosloff D, Kosloff R (1988) Viscoacoustic wave propagation simulation in the earth. Geophysics 53:769–777ADSGoogle Scholar
  13. Carcione JM, Kosloff D, Behle A, Seriani G (1992) A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media. Geophysics 57:1593–1607ADSGoogle Scholar
  14. Carey G (1997) Computational grids: generation, adaptation, and solution strategies. Taylor Francis, New YorkGoogle Scholar
  15. Castro CE, Käser M, Brietzke G (2010) Seismic waves in heterogeneous material: sub-cell resolution of the discontinuous Galerkin method. Geophys J Int 182(1):250–264. doi:10.1111/j.1365-246X.2010.04605.xADSGoogle Scholar
  16. Cerveny V (2001) Seismic ray theory. Cambridge University Press, CambridgezbMATHGoogle Scholar
  17. Chaljub E, Tarantola A (1997) Sensitivity of SS precursors to topography on the upper-mantle 660-km discontinuity. Geophys Res Lett 24(21):2613–2616ADSGoogle Scholar
  18. Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, Festa G (2007) Spectral element analysis in seismology. In: Wu R-S, Maupin V (eds) Advances in wave propagation in heterogeneous media, vol 48, Advances in geophysics. Elsevier, London, pp 365–419Google Scholar
  19. Chaljub E, Moczo P, Tsubo S, Bard P-Y, Kristek J, Käser M, Stupazzini M, Kristekova M (2010) Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble Valley, France. Bull Seis Soc Am 100(4):1427–1455. doi:10.1785/0120090052Google Scholar
  20. Chapman CH (2004) Fundamentals of seismic wave propagation. Cambridge University Press, CambridgeGoogle Scholar
  21. Chung ET, Engquist B (2006) Optimal discontinuous Galerkin methods for wave propagation. SIAM J Num Anal 44:2131–2158MathSciNetzbMATHGoogle Scholar
  22. CIG. www.geodynamics.org. Accessed 1 July 2008
  23. Cockburn B, Shu CW (1989) TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comp 52:411–435MathSciNetzbMATHGoogle Scholar
  24. Cockburn B, Shu CW (1991) The Runge–Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math Model Numer Anal 25:337–361MathSciNetzbMATHGoogle Scholar
  25. Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J Comput Phys 141:199–224MathSciNetADSzbMATHGoogle Scholar
  26. Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J Comput Phys 84:90–113MathSciNetADSzbMATHGoogle Scholar
  27. Cockburn B, Hou S, Shu CW (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math Comp 54:545–581MathSciNetADSzbMATHGoogle Scholar
  28. Cockburn B, Karniadakis GE, Shu CW (2000) Discontinuous Galerkin methods, theory, computation and applications, vol 11, LNCSE. Springer, New YorkzbMATHGoogle Scholar
  29. Courant R, Friedrichs KO, Lewy H (1928) Über die partiellen Differenzialgleichungen der mathematischen Physik. Mathematische Annalen 100:32–74MathSciNetADSzbMATHGoogle Scholar
  30. CUBIT. https://cubit.sandia.gov. Accessed 1 July 2008
  31. Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51:54–66ADSGoogle Scholar
  32. De Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Methods Eng 46:1101–1125zbMATHGoogle Scholar
  33. de la Puente J, Käser M, Dumbser M, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes IV: anisotropy. Geophys J Int 169(3):1210–1228ADSGoogle Scholar
  34. de la Puente J, Dumbser M, Käser M, Igel H (2008) Discontinuous Galerkin methods for wave propagation in poroelastic media. Geophysics 73(5):T77–T97. doi:10.1190/1.2965027Google Scholar
  35. De la Puente J, Ampuero JP, Käser M (2009) Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method. J Geophys Res 114, B10302. doi:10.1029/2008JB006271Google Scholar
  36. di Prisco C, Stupazzini M, Zambelli C (2007) Non-linear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading. Int J Numer Anal Methods Geomech 31(6):757–788zbMATHGoogle Scholar
  37. Dormy E, Tarantola A (1995) Numerical simulation of elastic wave propagation using a finite volume method. J Geophys Res 100(B2):2123–2134ADSGoogle Scholar
  38. Dumbser M (2005) Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains. Shaker, AachenGoogle Scholar
  39. Dumbser M, Käser M (2006) An arbitrary high order discontinuous galerkin method for elastic waves on unstructured meshes II: the three-dimensional isotropic case. Geophys J Int 167:319–336ADSGoogle Scholar
  40. Dumbser M, Käser M (2007) Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723. doi:10.1016/j.jcp.2006.06.043MathSciNetADSzbMATHGoogle Scholar
  41. Dumbser M, Munz CD (2005) Arbitrary high order discontinuous Galerkin schemes. In: Cordier S, Goudon T, Gutnic M, Sonnendrucker E (eds) Numerical methods for hyperbolic and kinetic problems, IRMA series in mathematics and theoretical physics. EMS Publishing, Zurich, pp 295–333Google Scholar
  42. Dumbser M, Käser M, Toro EF (2007) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p-adaptivity. Geophys J Int 171:695–717ADSGoogle Scholar
  43. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356ADSGoogle Scholar
  44. Ewald M, Igel H, Hinzen K-G, Scherbaum F (2006) Basin-related effects on ground motion for earthquake scenarios in the lower rhine embayment. Geophys J Int 166:197–212ADSGoogle Scholar
  45. Faccioli E, Maggio F, Quarteroni A, Tagliani A (1996) Spectral-domain decomposition methods for the solution of acoustic and elastic wave equation. Geophysics 61:1160–1174ADSGoogle Scholar
  46. Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J Seismol 1:237–251Google Scholar
  47. Faccioli E, Vanini M, Paolucci R, Stupazzini M (2005) Comment on “Domain reduction method for three-dimensional earthquake modeling in localized regions, part I: Theory.” by Bielak J, Loukakis K, Hisada Y, Yoshimura C, and “Part II: Verification and Applications.” by Yoshimura C, Bielak J, Hisada Y, Fernández A. Bull Seism Soc Am 95:763–769Google Scholar
  48. Falk RS, Richter GR (1999) Explicit finite element methods for symmetric hyperbolic equations. SIAM J Num Anal 36(3):935–952MathSciNetGoogle Scholar
  49. Falk J, Tessmer E, Gajewski D (1996a) Efficient finite-difference modelling of seismic waves using locally adjustable time steps. Geophys Prosp 46:603–616ADSGoogle Scholar
  50. Falk J, Tessmer E, Gajewski D (1996b) Tube wave modelling by the finite differences method with varying grid spacing. Pure Appl Geoph 148:77–93ADSGoogle Scholar
  51. Fernandez A, Bielak J, Prentice C (2006) Urban seismology; City effects on earthquake ground motion and effects of spatial distribution of ground motion on structural response paper presented at 2006 annual meeting. Seism Res Lett 77(2):305Google Scholar
  52. Fornberg B (1996) A practical guide to pseudospectral methods. Cambridge University Press, CambridgezbMATHGoogle Scholar
  53. Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Royal Astronom Soc 23(4):417–33ADSGoogle Scholar
  54. Furumura T, Takenaka H (1996) 2.5-D modeling of elastic waves using the pseudospectral method. Geophys J Int 124:820–832ADSGoogle Scholar
  55. Geller RJ, Takeuchi N (1998) Optimally accurate second-order time-domain finite difference scheme for the elastic equation of motion: one-dimensional case. Geophys J Int 135:48–62ADSGoogle Scholar
  56. Giraldo FX, Hesthaven JS, Warburton T (2002) Nodal high order discontinuous Galerkin methods for the spherical shallow water equations. J Comput Phys 181(2):499–525MathSciNetADSzbMATHGoogle Scholar
  57. Graves RW (1993) Modeling three-dimensional site response effects in the Marina district basin, San Francisco, California. Bull Seism Soc Am 83:1042–1063Google Scholar
  58. Grote MJ, Schneebeli A, Schötzau D (2006) Discontinuous Galerkin finite element method for the wave equation. SIAM J Num Anal 44(6):2408–2431zbMATHGoogle Scholar
  59. Hermann V, Käser M, Castro CE (2011) Non-conforming hybrid meshes for efficient 2D wave propagation using the discontinuous Galerkin method. Geophys J Int 184(2):746–758. doi:10.1111/j.1365-246X.2010.04858.xADSGoogle Scholar
  60. Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin. In: Algorithm, analysis and applications. Springer, New YorkGoogle Scholar
  61. Hestholm SO, Ruud BO (1998) 3-D finite-difference elastic wave modeling including surface topography. Geophysics 63:613–622ADSGoogle Scholar
  62. Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655ADSGoogle Scholar
  63. Hu FQ, Hussaini MY, Rasetarinera P (1999) An analysis of the discontinuous Galerkin method for wave propagation problems. J Comput Phys 151(2):921–946ADSzbMATHGoogle Scholar
  64. Igel H (1999) Wave propagation through 3-D spherical sections using the Chebyshev spectral method. Geop J Int 136:559–567ADSGoogle Scholar
  65. Igel H, Gudmundsson O (1997) Frequency-dependent effects on travel times and waveforms of long-period S and SS waves. Phys Earth Planet Inter 104:229–246ADSGoogle Scholar
  66. Igel H, Weber M (1995) SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett 22(6):731–734ADSGoogle Scholar
  67. Igel H, Weber M (1996) P-SV wave propagation in the Earth’s mantle using finite-differences: application to heterogeneous lowermost mantle structure. Geophys Res Lett 23:415–418ADSGoogle Scholar
  68. Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation through finite-difference grids. Geophysics 60:1203–1216ADSGoogle Scholar
  69. Igel H, Nissen-Meyer T, Jahnke G (2001) Wave propagation in 3-D spherical sections: effects of subduction zones. Phys Earth Planet Inter 132:219–234ADSGoogle Scholar
  70. Jahnke G, Thorne M, Cochard A, Igel H (2008) Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: application to whole mantle scattering. Geophys J Int 173(3):815–826Google Scholar
  71. Jastram C, Tessmer E (1994) Elastic modelling on a grid with vertically varying spacing. Geophys Prosp 42:357–370ADSGoogle Scholar
  72. Karypis G, Kumar V (1998) Multilevel k-way partitioning scheme for irregular graphs. J Parallel Distrib Comput 48(1):96–129MathSciNetGoogle Scholar
  73. Käser M, Dumbser M (2006) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: the two-dimensional isotropic case with external source terms. Geophys J Int 166:855–877ADSGoogle Scholar
  74. Käser M, Igel H (2001) Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys Prospect 49(5):607–619ADSGoogle Scholar
  75. Käser M, Igel H, Sambridge M, Braun J (2001) A comparative study of explicit differential operators on arbitrary grids. J Comput Acoust 9(3):1111–1125MathSciNetGoogle Scholar
  76. Käser M, Dumbser M, de la Puente J, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes III: viscoelastic attenuation. Geophys J Int 168(1):224–242ADSGoogle Scholar
  77. Käser M, Pelties P, Castro CE, Djikpesse H, Prange M (2010) Wave field modeling in exploration seismology using the discontinuous Galerkin finite element method on HPC-infrastructure. Lead Edge 29:76–85Google Scholar
  78. Kelly KR, Ward RW, Treitel S, Alford RM (1976) Synthetic seismograms: a finite-difference approach. Geophysics 41:2–27ADSGoogle Scholar
  79. Kennett BLN (2002) The seismic wavefield, vol I + II. Cambridge University Press, CambridgezbMATHGoogle Scholar
  80. Komatitsch D, Tromp J (2002a) Spectral-element simulations of global seismic wave propagation, part I: validation. Geophys J Int 149:390–412ADSGoogle Scholar
  81. Komatitsch D, Tromp J (2002b) Spectral-element simulations of global seismic wave propagation, part II: 3-D models, oceans, rotation, and gravity. Geophys J Int 150:303–318ADSGoogle Scholar
  82. Komatitsch D, Vilotte JP (1998) The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seism Soc Am 88:368–392Google Scholar
  83. Komatitsch D, Coutel F, Mora P (1996) Tensorial formulation of the wave equation for modelling curved interfaces. Geophys J Int 127(1):156–168ADSGoogle Scholar
  84. Kosloff D, Baysal E (1982) Forward modeling by a fourier method. Geophysics 47(10):1402–1412ADSGoogle Scholar
  85. Kremers S, Wassermann J, Meier K, Pelties C, van Driel M, Vasseur J, Hort M (2013) Inverting the source mechanism of Strombolian explosions at Mt Yasur, Vanuatu, using a multi-parameter dataset. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2013.06.007Google Scholar
  86. Krishnan S, Ji C, Komatitsch D, Tromp J (2006a) Case studies of damage to tall steel moment-frame buildings in Southern California during large San Andreas earthquakes. Bull Seismol Soc Am 96(4A):1523–1537Google Scholar
  87. Krishnan S, Ji C, Komatitsch D, Tromp J (2006b) Performance of two 18-story steel moment-frame buildings in Southern California during two large simulated San Andreas earthquakes. Earthq Spectra 22(4):1035–106Google Scholar
  88. Kwak D-Y, Im Y-T (2002) Remeshing for metal forming simulations – part II: three dimensional hexahedral mesh generation. Int J Numer Methods Eng 53:2501–2528zbMATHGoogle Scholar
  89. Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53:1425–1436ADSGoogle Scholar
  90. LeVeque RL (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, CambridgezbMATHGoogle Scholar
  91. Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3):639–66Google Scholar
  92. Magnier S-A, Mora P, Tarantola A (1994) Finite differences on minimal grids. Geophysics 59:1435–1443ADSGoogle Scholar
  93. Marfurt KJ (1984) Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics 49:533–549ADSGoogle Scholar
  94. Mazzieri I, Stupazzini M, Guidotti R, Smerzini C (2013) SPEED: SPectral elements in elastodynamics with discontinuous Galerkin: a non-conforming approach for 3D multi-scale problems. Int J Num Meth Eng 12:991–1010MathSciNetGoogle Scholar
  95. Mercerat ED, Vilotte JP, Sanchez-Sesma FJ (2006) Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys J Int 166(2):679–698ADSGoogle Scholar
  96. Moczo P (1989) Finite-difference techniques for SH-waves in 2-D media using irregular grids – application to the seismic response problem. Geophys J Int 99:321–329ADSGoogle Scholar
  97. Moczo P, Kristek J, Halada L (2000) 3D 4th-order staggered grid finite-difference schemes: stability and grid dispersion. Bull Seism Soc Am 90:587–603MathSciNetGoogle Scholar
  98. Monk P, Richter GR (2005) A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J Sci Comput 22–23:443–477MathSciNetGoogle Scholar
  99. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343ADSGoogle Scholar
  100. Müller G (1977) Earth-flattening approximation for body waves derived from geometric ray theory – improvements, corrections and range of applicability. J Geophys 42:429–436Google Scholar
  101. Nissen-Meyer T, Fournier A, Dahlen FA (2007) A 2-D spectral-element method for computing spherical-earth seismograms - I. Moment-tensor source. Geophys J Int 168:1067–1092ADSGoogle Scholar
  102. Ohminato T, Chouet BA (1997) A free-surface boundary condition for including 3D topography in the finite-difference method. Bull Seism Soc Am 87:494–515Google Scholar
  103. Opršal I, Zahradník J (1999) Elastic finite-difference method for irregular grids. Geophysics 64:240–250ADSGoogle Scholar
  104. Pelties C, Käser M, Hermann V, Castro CE (2010) Regular versus irregular meshing for complicated models and their effect on synthetic seismograms. Geophys J Int. doi:10.1111/j.1365-246X.2010.04777.xGoogle Scholar
  105. Pelties C, De la Puente J, Ampuero JP, Brietzke G, Käser M (2012) Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J Geophys Res Solid Earth. doi:10.1029/2011JB008857Google Scholar
  106. Peter D, Komatitsch D, Luo Y, Martin R, Le Goff N, Casarotti E, Le Loher P, Magnoni F, Liu Q, Blitz C, Nissen Meyer T, Basini P, Tromp J (2011) Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys J Int 186(2):721–739ADSGoogle Scholar
  107. Petersen S, Farhat C, Tezaur R (2009) A space–time discontinuous Galerkin method for the solution of the wave equation in the time domain. Int J Num Meth Eng 78(3):275–295MathSciNetzbMATHGoogle Scholar
  108. Pitarka A (1999) 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull Seism Soc Am 89:54–68MathSciNetGoogle Scholar
  109. Priolo E, Carcione JM, Seriani G (1996) Numerical simulation of interface waves by high-order spectral modeling techniques. J Acoust Soc Am 95:681–693ADSGoogle Scholar
  110. QUEST. www.quest-itn.org. Accessed 1 Sept 2013
  111. Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Technical report, LA-UR-73-479, Los Alamos Scientific LaboratoryGoogle Scholar
  112. Ripperger J, Igel H, Wassermann J (2004) Seismic wave simulation in the presence of real volcano topography. J Volcanol Geotherm Res 128:31–44ADSGoogle Scholar
  113. Rivière B (2008) Discontinuous Galerkin methods for solving elliptic and parabolic equations – theory and implementation. Society for Industrial and Applied Mathematics (SIAM), PhiladelphiazbMATHGoogle Scholar
  114. Rivière B, Shaw S, Wheeler MF, Whiteman JR (2003) Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numerische Mathematik 95(2):347–376MathSciNetzbMATHGoogle Scholar
  115. Scandella L (2007) Numerical evaluation of transient ground strains for the seismic response analyses of underground structures. PhD thesis, Milan University of Technology, MilanGoogle Scholar
  116. SCEC. www.scec.org. Accessed 1 Sept 2013
  117. Schneiders R (2000) Octree-based hexahedral mesh generation. Int J Comput Geom Appl 10(4):383–398MathSciNetzbMATHGoogle Scholar
  118. Schwartzkopff T, Munz CD, Toro EF (2002) ADER: a high-order approach for linear hyperbolic systems in 2D. J Sci Comput 17:231–240MathSciNetzbMATHGoogle Scholar
  119. Schwartzkopff T, Dumbser M, Munz CD (2004) Fast high order ADER schemes for linear hyperbolic equations. J Comput Phys 197:532–539ADSzbMATHGoogle Scholar
  120. Seriani G, Priolo E, Carcione JM, Padovani E (1992) High-order spectral element method for elastic wave modeling. In: 62nd annual international meeting, society of exploration geophysics, expanded abstracts, pp 1285–1288Google Scholar
  121. Shepherd JF (2007) Topologic and geometric constraint-based hexahedral mesh generation. PhD thesis on Computer Science, School of Computing The University of Utah, Salt Lake CityGoogle Scholar
  122. Sieminski A, Liu Q, Trampert J, Tromp J (2007) Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophys J Int 168:1153–1174ADSGoogle Scholar
  123. SPICE. www.spice-rtn.org. Accessed 1 Sept 2013
  124. Stupazzini M (2004) A spectral element approach for 3D dynamic soil-structure interaction problems. PhD thesis, Milan University of Technology, MilanGoogle Scholar
  125. Takeuchi N, Geller RJ (2000) Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media. Phys Earth Planet Int 119:99–131ADSGoogle Scholar
  126. Tape C, Liu Q, Tromp J (2007) Finite-frequency tomography using adjoint methods: methodology and examples using membrane surface waves. Geophys J Int 168:1105–1129ADSGoogle Scholar
  127. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903ADSGoogle Scholar
  128. Tessmer E (2000) Seismic finite-difference modeling with spatially varying time steps. Geophysics 65:1290–1293ADSGoogle Scholar
  129. Tessmer K, Kosloff D (1996) 3-D elastic modeling with surface topography by a Chebyshev spectral method. Geophysics 59:464–473ADSGoogle Scholar
  130. Tessmer E, Kessler D, Kosloff K, Behle A (1996) Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity. J Comput Phys 100:355–363ADSGoogle Scholar
  131. Thomas C, Igel H, Weber M, Scherbaum F (2000) Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: numerical method and application to precursor energy to PKPdf. Geophys J Int 141:307–320ADSGoogle Scholar
  132. Thorne M, Lay T, Garnero E, Jahnke G, Igel H (2007) 3-D seismic imaging of the D″ region beneath the Cocos Plate. Geophys J Int 170:635–648ADSGoogle Scholar
  133. Titarev VA, Toro EF (2002) ADER: arbitrary high order Godunov approach. J Sci Comput 17:609–618MathSciNetzbMATHGoogle Scholar
  134. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. Springer, BerlinzbMATHGoogle Scholar
  135. Toro EF, Millington AC, Nejad LA (2001) Towards very high order Godunov schemes. In: Godunov methods; theory and applications. Kluwer/Plenum, Oxford, pp 907–940Google Scholar
  136. Toyokuni G, Takenaka H, Wang Y, Kennett BLN (2005) Quasi-spherical approach for seismic wave modeling in a 2-D slice of a global earth model with lateral heterogeneity. Geophys Res Lett 32, L09305ADSGoogle Scholar
  137. Van der Hilst RD (2004) Changing views on Earth’s deep mantle. Science 306:817–818Google Scholar
  138. VERCE. www.verce.eu. Accessed 1 Sept 2013
  139. Virieux J (1984) SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49:1933–1957ADSGoogle Scholar
  140. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51:889–901ADSGoogle Scholar
  141. Woodhouse JH, Dziewonski AM (1984) Mapping the upper mantle: three dimensional modelling of earth structure by inversion of seismic waveforms. J Geophys Res 89:5953–5986ADSGoogle Scholar
  142. Yoshimura C, Bielak J, Hisada Y, Fernández A (2003) Domain reduction method for three-dimensional earthquake modeling in localized regions, part II: verification and applications. Bull Seism Soc Am 93:825–841Google Scholar
  143. Zambelli C (2006) Experimental and theoretical analysis of the mechanical behaviour of cohesionless soils under cyclic-dynamic loading. PhD thesis, Milan University of Technology, MilanGoogle Scholar
  144. Zienckiewicz O, Taylor RL (1989) The finite element method, vol 1. McGraw-Hill, LondonGoogle Scholar

Books and Reviews

  1. Carcione JM, Herman GC, ten Kroode APE (2002) Seismic modelling. Geophysics 67:1304–1325ADSGoogle Scholar
  2. Fichtner A (2010) Full seismic waveform modelling and inversion. Springer, Springer-Verlag Berlin HeidelbergGoogle Scholar
  3. Peter M, Kristek J, Gális M (2014) The finite-difference modelling of Earthquake motions. Cambridge University PressGoogle Scholar
  4. Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The finite difference and finite-element modelling of seismic wave propagation and earthquake motion. Acta Physica Slovaca 57(2):177–406ADSGoogle Scholar
  5. Wang H, Igel H, Gallovic F, Cochard A, Ewald M (2008) Source-related variations of ground motions in 3-D media: application to the Newport-Inglewood fault, Los Angeles Basin. Geophys J Int 175(1):202–214ADSGoogle Scholar
  6. Wu RS, Maupin V (eds) (2006) Advances in wave propagation in heterogeneous earth. In: Dmowska R (ed) Advances in geophysics, vol 48. Academic/Elsevier, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Heiner Igel
    • 1
  • Martin Käser
    • 1
    • 3
  • Marco Stupazzini
    • 2
    • 3
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Structural EngineeringPolitecnico di MilanoMilanItaly
  3. 3.Munich ReMunichGermany