Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Quantum Computing Using Optics

  • Gerard J. Milburn
  • Andrew G. White
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_431-3

Definition of the Subject

Quantum computation is a new approach to information processing based on physical devices that operate according to the quantum principles of superposition and unitary evolution (Deutsch 1985; Feynman 1982). This enables more efficient algorithms than are available for a computer operating according to classical principles, the most significant of which is Shor’s efficient algorithm for finding the prime factors of a large integer (Shor 1994). There is no known efficient algorithm for this task on conventional computing hardware.

Optical implementations of quantum computing have largely focused on encoding quantum information using single-photon states of light. For example, a single photon could be excited to one of two carefully defined orthogonal mode functions of the field with different momentum directions. However, as optical photons do not interact with each other directly, physical devices that enable one encoded bit of information to unitarily change...


Entangle State Beam Splitter Quantum Computation Gate Operation Quantum Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Beckman D, Chari AN, Devabhaktuni S, Preskill J (1996) Phys Rev A 54:1034MathSciNetADSCrossRefGoogle Scholar
  2. Braunstein SL et al (1999) Phys Rev Lett 83:1054MathSciNetADSCrossRefGoogle Scholar
  3. Cleve R, Ekert A, Henderson L, Macchiavello C, Mosca M (1999) On quantum algorithms. LANL quant-ph/9903061Google Scholar
  4. Darquie B, Jones MPA, Dingjan J, Beugnon J, Bergamini S, Sortais Y, Messin G, Browaeys A, Grangier P (2005) Science 309:454ADSCrossRefGoogle Scholar
  5. Deutsch D (1985) Quantum-theory, the Church-Turing principle and the universal quantum computer. Proc R Soc Lond A 400:97–117zbMATHMathSciNetADSCrossRefGoogle Scholar
  6. Duan L-M, Lukin MD, Cirac JI, Zoller P (2001) Nature 414:413ADSCrossRefGoogle Scholar
  7. Einstein A (1905) On a heuristic point of view about the creation and conversion of light? Ann Phys 17:132zbMATHCrossRefGoogle Scholar
  8. Eisaman MD, Fleischhauer M, Lukin MD, Zibrov AS (2006) Toward quantum control of single photons. Opt Photon News 17:22–27ADSCrossRefGoogle Scholar
  9. Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467MathSciNetCrossRefGoogle Scholar
  10. Gasparoni S et al (2004) Phys Rev Lett 93:020504ADSCrossRefGoogle Scholar
  11. Gilchrist A, Langford NK, Nielsen MA (2005) Distance measures to compare real and ideal quantum processes. Phys Rev A 71:062310ADSCrossRefGoogle Scholar
  12. Gottesman D, Chuang IL (1999) Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402:390–393ADSCrossRefGoogle Scholar
  13. Hennrich M, Legero T, Kuhn A, Rempe G (2004) Photon statistics of a non-stationary periodically driven single-photon source. New J Phys 6:86CrossRefGoogle Scholar
  14. Hofmann H, Takeuchi S (2002) Phys Rev A 66:024308ADSCrossRefGoogle Scholar
  15. Hong CK, Ou ZY, Mandel L (1987) Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett 59:2044ADSCrossRefGoogle Scholar
  16. Hutchinson GD, Milburn GJ (2004) Nonlinear quantum optical computing via measurement. J Mod Opt 51:1211–1222zbMATHMathSciNetADSCrossRefGoogle Scholar
  17. James DFV, Kwiat PG, Munro WJ, White AG (2001) Measurement of qubits. Phys Rev A 64:052312ADSCrossRefGoogle Scholar
  18. Jiang L, Taylor JM, Khaneja N, Lukin MD (2007) Optimal approach to quantum communication using dynamic programming. arXiv:quant-ph/0710.5808Google Scholar
  19. Keller M, Lange B, Hayasaka K, Lange W, Walther H (2003) Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431:1075ADSCrossRefGoogle Scholar
  20. Kieling K, Rudolph T, Eisert J (2007) Percolation, renormalization, and quantum computing with nondeterministic gates. Phys Rev Lett 99:130501MathSciNetADSCrossRefGoogle Scholar
  21. Kiesel N, Schmid C, Weber U, Ursin R, Weinfurter H (2007) Phys Rev Lett 99:250505CrossRefGoogle Scholar
  22. Knill E (2002) Phys Rev A 66:052306MathSciNetADSCrossRefGoogle Scholar
  23. Knill E (2005) Quantum computing with realistically noisy devices. Nature 434:39–44ADSCrossRefGoogle Scholar
  24. Knill E, Laflamme R, Milburn GJ (2001) Efficient linear optical quantum computation. Nature 409:46ADSCrossRefGoogle Scholar
  25. Kok P, Lee H, Dowling JP (2002) Phys Rev A 66:063814ADSCrossRefGoogle Scholar
  26. Kok P, Munro WJ, Nemoto K, Ralph TC, Dowling JP, Milburn GJ (2007) Linear optical quantum computing. Rev Mod Phys 79:135ADSCrossRefGoogle Scholar
  27. Langford NK, Weinhold TJ, Prevedel R, Gilchrist A, O’Brien JL, Pryde GJ, White AG (2005) Phys Rev Lett 95:210504ADSCrossRefGoogle Scholar
  28. Lanyon BP, Barbieri M, Almeida MP, Jennewein T, Ralph TC, Resch KJ, Pryde G, O’Brien JL, Gilchrist A, White AG (2007a) Quantum computing using shortcuts through higher dimensions. Nat PhysGoogle Scholar
  29. Lanyon BP, Weinhold TJ, Langford NK, Barbieri M, James DFV, Gilchrist A, White AG (2007b) Phys Rev Lett 99:250505ADSCrossRefGoogle Scholar
  30. Lu C-Y, Browne DE, Yang T, Pan J-W (2007a) Phys Rev Lett 99:250504ADSCrossRefGoogle Scholar
  31. Lu C-Y, Zhou X-Q, Gühne O, Gao W-B, Zhang J, Yuan Z-S, Goebel A, Yang T, Pan J-W (2007b) Experimental entanglement of six photons in graph states. Nat Phys 3:91CrossRefGoogle Scholar
  32. Menicucci NC et al (2002) Phys Rev Lett 88:167901ADSCrossRefGoogle Scholar
  33. Migdall A et al (2002) Phys Rev A 66:053805ADSCrossRefGoogle Scholar
  34. Milburn GJ (1989) A quantum optical fredkin gate. Phys Rev Lett 62:2124–2127ADSCrossRefGoogle Scholar
  35. Mishina OS, Kupriyanov DV, Muller JH, Polzik ES (2007) Spectral theory of quantum memory and entanglement via Raman scattering of light by an atomic ensemble. Phys Rev A 75:042326ADSCrossRefGoogle Scholar
  36. Neergaard-Nielsen JS, Melholt Nielsen B, Takahashi H, Vistnes AI, Polzik ES (2007) High purity bright single photon source. Opt Express 15:7940ADSCrossRefGoogle Scholar
  37. Nielsen MA (2004) Optical quantum computation using cluster states. Phys Rev Lett 93:040503ADSCrossRefGoogle Scholar
  38. O’Brien JL, Pryde GJ, White AG, Ralph TC, Branning D (2003) Demonstration of an all-optical quantum controlled-NOT gate. Nature 426:264ADSCrossRefGoogle Scholar
  39. O’Brien JL et al (2004) Phys Rev Lett 93:080502CrossRefGoogle Scholar
  40. Okamoto R, Hofmann HF, Takeuchi S, Sasaki K (2007) Phys Rev Lett 99:250506CrossRefGoogle Scholar
  41. Pittman TB, Jacobs BC, Franson JD (2001) Probabilistic quantum logic operations using polarizing beam splitters. Phys Rev A 64:062311ADSCrossRefGoogle Scholar
  42. Pittman TB, Jacobs BC, Franson JD (2002) Phys Rev Lett 88:257902ADSCrossRefGoogle Scholar
  43. Pittman TB, Fitch MJ, Jacobs BC, Franson JD (2003) Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys Rev A 68:032316ADSCrossRefGoogle Scholar
  44. Popescu S (2006) KLM quantum computation as a measurement based computation. arXiv:quant-ph/0610025Google Scholar
  45. Prevedel R et al (2007) Nature 445:65ADSCrossRefGoogle Scholar
  46. Ralph TC, White AG, Munro WJ, Milburn GJ (2001) Simple scheme for efficient linear optics quantum gates. Phys Rev A 65:012314ADSCrossRefGoogle Scholar
  47. Ralph TC, Langford NK, Bell TB, White AG (2002) Linear optical controlled-NOT gate in the coincidence basis. Phys Rev A 65:062324ADSCrossRefGoogle Scholar
  48. Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86:5188ADSCrossRefGoogle Scholar
  49. Rhode PP, Ralph TC (2005) Phys Rev A 71:032320ADSCrossRefGoogle Scholar
  50. Sangouard N, Simon C, Minar J, Zbinden H, de Riedmatten H, Gisin N (2007) Long-distance entanglement distribution with single-photon sources. arXiv:quant-ph/0706.1924v1Google Scholar
  51. Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th annual symposium on foundations of computer science. See also LANL preprint quant-ph/9508027Google Scholar
  52. Simon C et al (2007) Phys Rev Lett 98:190503ADSCrossRefGoogle Scholar
  53. Special Issue on Single photon Sources (2004) Single photon Sources 51(9–10)Google Scholar
  54. U’Ren AB, Mukamel E, Banaszek K, Walmsley IA (2003) Phil Trans R Soc A 361:1471Google Scholar
  55. Van Meter R, Ladd TD, Munro WJ, Nemoto K (2007) System design for a long-line quantum repeater. arXiv:quant-ph/0705.4128v1Google Scholar
  56. Vandersypen LMK et al (2001) Nature 414:883ADSCrossRefGoogle Scholar
  57. Walls DF, Milburn GJ (2008) Quantum optics, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  58. Walther P, Resch KJ, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M, Zeilinger A (2005) Experimental one-way quantum computing. Nature 434:169ADSCrossRefGoogle Scholar
  59. Weinhold TJ, Gilchrist A, Resch KJ, Doherty AC, O’Brien JL, Pryde GJ, White AG (2008) Understanding photonic quantum-logic gates: the road to fault tolerance. arxiv 0808.0794Google Scholar
  60. White AG et al (2007) Measuring two-qubit gates. J Opt Soc Am B 24:172–183ADSCrossRefGoogle Scholar
  61. Yamamoto Y, Kitagawa M, Igeta K (1988) Proceedings of the 3rd Asia-Pacific phys conference 779. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Centre for Engineered Quantum Systems and Centre for Quantum Computing and Communication Technology, School of Mathematics and PhysicsUniversity of QueenslandBrisbaneAustralia