Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Quantum Chaos

  • Giulio Casati
  • Tomaž Prosen
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_427-3

Definition of the Subject

As it is now widely recognized, classical dynamical chaos has been one of the major scientific breakthroughs of the past century. Quantum chaos, sometimes called Quantum chaology, studies the manifestations of chaotic motion and related dynamical phenomena in quantum mechanics (Haake 2001; Stöckmann 1999).

More abstractly, one may define as quantum chaos those phenomena of simple quantum systems which can be described statistically and exhibit some universal (i.e., system independent) features. By the term simple we mean here that the system can be specified by a finite set of parameters or, generally, can be described by a finite amount of information. So we can fundamentally distinguish the phenomena of quantum chaos from similar dynamical phenomena in disordered systems – specified in terms of random parameters and which therefore contain infinite amount of information in an appropriate (say thermodynamic) limit.

The universal statistical properties of...


Chaotic System Wigner Function Random Matrix Theory Quantum Chaos Quantum Ergodicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bäcker A (2007) Comput Sci Eng 9:60CrossRefGoogle Scholar
  2. Bayfield JE, Koch PM (1974) Phys Rev Lett 33:258ADSCrossRefGoogle Scholar
  3. Bayfield JE, Casati G, Guarneri I, Sokol DW (1989) Phys Rev Lett 63:364ADSCrossRefGoogle Scholar
  4. Beenakker CWJ (1997) Rev Mod Phys 69:731ADSCrossRefGoogle Scholar
  5. Benenti G, Casati G, Strini G (2004) Principles of quantum computation and information, vol I, Basic concepts. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  6. Benenti G, Casati G, Strini G (2007) Principles of quantum computation and information, vol II, Basic tools and special topics. World Scientific, SingaporeCrossRefzbMATHGoogle Scholar
  7. Berry MV (1977) J Phys A 10:2083ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. Berry MV (1989) Proc R Soc A 423:219ADSCrossRefGoogle Scholar
  9. Berry MV, Robnik M (1984) J Phys A 17:2413ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. Berry MV, Tabor M (1977a) Proc R Soc A 356:375ADSCrossRefzbMATHGoogle Scholar
  11. Berry MV, Tabor M (1977b) J Phys A 10:371ADSCrossRefGoogle Scholar
  12. Bogomolny EB (1988) Phys D 31:169CrossRefzbMATHMathSciNetGoogle Scholar
  13. Bohigas O, Giannoni MJ, Schmit C (1984) Phys Rev Lett 52:1ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. Casati G, Chirikov BV (1985) Phys Rev Lett 54:1350ADSCrossRefMathSciNetGoogle Scholar
  15. Casati G, Chirikov BV (1995) In: Quantum chaos: between order and disorder. Cambridge University Press, Cambridge, p 3Google Scholar
  16. Casati G, Prosen T (1999) Phys Rev Lett 83:4279CrossRefGoogle Scholar
  17. Casati G, Prosen T (2000) Phys Rev Lett 85:4261ADSCrossRefGoogle Scholar
  18. Casati G, Prosen T (2005) Phys Rev A 72:032111ADSCrossRefMathSciNetGoogle Scholar
  19. Casati G, Chirikov BV, Izrailev FM, Ford J (1979) Stochastic behavior in classical and quantum Hamiltonian systems. In: Casati FG, Ford J (eds) Lecture notes in physics, vol 93. Springer, BerlinGoogle Scholar
  20. Casati G, Guarneri I, Valz-Gris (1980) Lett Nuovo Cimento 28:279CrossRefMathSciNetGoogle Scholar
  21. Casati G, Chirikov BV, Shepelyanski D (1984) Phys Rev Lett 53:2525ADSCrossRefGoogle Scholar
  22. ColindeVerdiere Y (1985) Commun Math Phys 102:111MathSciNetGoogle Scholar
  23. Cornfeld IP, Fomin SV, Sinai YG (1982) Ergodic theory. Springer, New YorkCrossRefzbMATHGoogle Scholar
  24. Doya V, Legrand O, Mortessagne F, Miniatura C (2001) Phys Rev Lett 88:014 102CrossRefGoogle Scholar
  25. Ellegaard C, Schaadt K, Bertelsen P (2001) Phys Scr T90:223ADSCrossRefGoogle Scholar
  26. Feingold M, Peres A (1986) Phys Rev A 34:591ADSCrossRefMathSciNetGoogle Scholar
  27. Fishman S, Grempel DR, Prange RE (1982) Phys Rev Lett 49:509ADSCrossRefMathSciNetGoogle Scholar
  28. Fyodorov YV, Savin DV, Sommers HJ (2005) J Phys A 38:10 731CrossRefMathSciNetGoogle Scholar
  29. Galvez EJ, Sauer BE, Moorman L, Koch PM, Richards D (1988) Phys Rev Lett 61:2011ADSCrossRefGoogle Scholar
  30. Gorin T, Prosen T, Seligman TH, Žnidarič M (2006) Phys Rep 435:33ADSCrossRefGoogle Scholar
  31. Gutzwiller MC (1991) Chaos in classical and quantum mechanics. Springer, New YorkGoogle Scholar
  32. Haake F (2001) Quantum signatures of chaos, 2nd edn. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  33. Harayama T, Fukushima T, Sunada S, Ikeda KS (2003) Phys Rev Lett 91:073 903CrossRefGoogle Scholar
  34. Heller EJ (1984) Phys Rev Lett 53:1515ADSCrossRefMathSciNetGoogle Scholar
  35. Heller EJ (1991) Chaos and quantum physics. In: Giannoni MJ, Voros A, Zinn-Justin J (eds) Les Houches, session LII, 1989. North Holland, Amsterdam, p 547Google Scholar
  36. Henry MK, Emerson J, Martinez R, Cory DG (2006) Phys Rev A 74:032 617CrossRefGoogle Scholar
  37. Horvat M, Prosen T (2003) J Phys A 36:4015ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. Klappauf BG, Oskay WH, Steck DA, Raizen MG (1999) Phys D 131:78CrossRefGoogle Scholar
  39. Kuhl U, Stöckmann HJ, Weaver R (2005) J Phys A 38:10 433CrossRefGoogle Scholar
  40. Marcus CM, Rimberg AJ, Westervelt RM, Hopkins PF, Gossard AC (1992) Phys Rev Lett 69:506ADSCrossRefGoogle Scholar
  41. Mehta ML (1991) Random matrices. Academic, New YorkzbMATHGoogle Scholar
  42. Müller S, Heusler S, Braun P, Haake F, Altland A (2004) Phys Rev Lett 93:014 103CrossRefGoogle Scholar
  43. Müller S, Heusler S, Braun P, Haake F, Altland A (2005) Phys Rev E 72:046 207CrossRefGoogle Scholar
  44. Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, CambridgezbMATHGoogle Scholar
  45. Peres A (1984) Phys Rev A 30:1610ADSCrossRefMathSciNetGoogle Scholar
  46. Prosen T (2007) J Phys A Math Theor 40:7881ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. Richter A (2001) Phys Scr T90:212ADSCrossRefGoogle Scholar
  48. Robnik M (1983) J Phys A 16:3971ADSCrossRefzbMATHMathSciNetGoogle Scholar
  49. Shnirelman AI (1974) Usp Math Nauk 29:181Google Scholar
  50. Sieber M (2002) J Phys A 35:L613ADSCrossRefzbMATHMathSciNetGoogle Scholar
  51. Sridhar S (1991) Phys Rev Lett 67:785ADSCrossRefGoogle Scholar
  52. Stein J, Stöckmann HJ (1992) Phys Rev Lett 68:2867ADSCrossRefGoogle Scholar
  53. Stöckmann HJ (1999) Quantum chaos: an introduction. Cambridge University Press, CambridgezbMATHGoogle Scholar
  54. Weinstein YA, Lloyd S, Emerson J, Cory DG (2002) Phys Rev Lett 89:157 902CrossRefMathSciNetGoogle Scholar
  55. Zelditch S (1987) Duke Math J 55:919CrossRefzbMATHMathSciNetGoogle Scholar
  56. Žnidarič M, Prosen T (2003) J Phys A Math Gen 36:2463ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Universita dell’InsubriaComoItaly
  2. 2.Univerza v LjubljaniLjubljanaSlovenia