Encyclopedia of Complexity and Systems Science

Living Edition
| Editors: Robert A. Meyers

Brain Pacemaker

  • Peter A. Tass
  • Christian Hauptmann
  • Oleksandr V. Popovych
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-27737-5_42-2


Coordinated reset stimulation

Coordinated reset (CR) stimulation is an effectively desynchronizing control technique, where a population of synchronized oscillators is stimulated via several stimulation sites in such a way that spatially and timely coordinated phase reset is achieved in subpopulations assigned to each of the stimulation sites. This method is suggested for the counteraction of abnormal neuronal synchronization characteristic for several neurological diseases and amelioration of their symptoms. It has successively been verified in a number of experimental and clinical studies.

Deep brain stimulation

Electrical deep brain stimulation (DBS) is the standard therapy for medically refractory movements disorders, e.g., Parkinson’s disease and essential tremor. It requires a surgical treatment, where depth electrodes are chronically implanted in target areas like the thalamic ventralis intermedius nucleus or the subthalamic nucleus. For standard DBS electrical...

This is a preview of subscription content, log in to check access.


  1. Abbott L, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183CrossRefGoogle Scholar
  2. Adamchic I, Toth T, Hauptmann C, Tass PA (2013) Reversing pathologically increased electroencephalogram power by acoustic coordinated reset neuromodulation. Hum Brain Mapp 35(5):2099–2118CrossRefGoogle Scholar
  3. Alberts WW, Wright EJ, Feinstein B (1969) Cortical potentials and parkinsonian tremor. Nature 221:670–672ADSCrossRefGoogle Scholar
  4. Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89(2):1150–1160CrossRefGoogle Scholar
  5. Andres F, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16(6):520–527CrossRefGoogle Scholar
  6. Benabid A, Pollak P, Louveau A, Henry S, de Rougemont JJ (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1-6):344–346Google Scholar
  7. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemount J (1991) Long-term suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. Lancet 337:403–406CrossRefGoogle Scholar
  8. Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:73–74CrossRefGoogle Scholar
  9. Benabid A-L, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative gerneralized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157Google Scholar
  10. Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356CrossRefGoogle Scholar
  11. Beurrier C, Garcia L, Bioulac B, Hammond C (2002) Subthalamic nucleus: a clock inside basal ganglia? Thalamus Relat Syst 2:1–8CrossRefGoogle Scholar
  12. Blond S, Caparros-Lefebvre D, Parker F, Assaker R, Petit H, Guieu J-D, Christiaens J-L (1992) Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 77:62–68CrossRefGoogle Scholar
  13. Brice J, McLellan L (1980) Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1(8180):1221–1222CrossRefGoogle Scholar
  14. Daido H (1992) Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog Theor Phys 88:1213–1218ADSCrossRefGoogle Scholar
  15. Danzl P, Hespanha J, Moehlis J (2009) Event-based minimum-time control of oscillatory neuron models. Biol Cybern 101(5–6):387–399zbMATHCrossRefGoogle Scholar
  16. Debanne D, Gahweiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampus slice cultures. J Physiol 507:237–247CrossRefGoogle Scholar
  17. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloß M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn H, Moringlane J, Oertel W, Pinsker M, Reichmann H, Reuß A, Schneider G-H, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908CrossRefGoogle Scholar
  18. Dolan K, Majtanik M, Tass P (2005) Phase resetting and transient desynchronization in networks of globally coupled phase oscillators with inertia. Physica D 211:128–138ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. Dovzhenok A, Park C, Worth RM, Rubchinsky LL (2013) Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson’s disease. PLoS One 8(3):e58264ADSCrossRefGoogle Scholar
  20. Elble RJ, Koller WC (1990) Tremor. John Hopkins University Press, BaltimoreGoogle Scholar
  21. Ermentrout B, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural assemblies. J Math Biol 29:195–217MathSciNetzbMATHCrossRefGoogle Scholar
  22. Feldman D (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56CrossRefGoogle Scholar
  23. Feng X, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007a) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14–L21CrossRefGoogle Scholar
  24. Feng XJ, Shea-Brown E, Greenwald B, Kosut R, Rabitz H (2007b) Optimal deep brain stimulation of the subthalamic nucleus – a computational study. J Comput Neurosci 23(3):265–282MathSciNetCrossRefGoogle Scholar
  25. Filali M, Hutchison W, Palter V, Lozano A, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156:274–281CrossRefGoogle Scholar
  26. Freund H-J (2005) Long-term effects of deep brain stimulation in Parkinson’s disease. Brain 128:2222–2223CrossRefGoogle Scholar
  27. Garcia L, D’Alessandro G, Fernagut P-O, Bioulac B, Hammond C (2005) Impact of high-frequency stimulation parameters on the pattern of discharge of subthalamic neurons. J Neurophysiol 94:3662–3669CrossRefGoogle Scholar
  28. Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78ADSCrossRefGoogle Scholar
  29. Gildenberg P (2005) Evolution of neuromodulation. Stereotact Funct Neurosurg 83:71–79CrossRefGoogle Scholar
  30. Goddar G (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021ADSCrossRefGoogle Scholar
  31. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359ADSCrossRefGoogle Scholar
  32. Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5:550–569CrossRefGoogle Scholar
  33. Grill WM, McIntyre CC (2001) Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thalamus Relat Syst 1:269–277CrossRefGoogle Scholar
  34. Haken H (1970) Laser theory, vol XXV/2C. Encyclopedia of physics. Springer, BerlinGoogle Scholar
  35. Haken H (1977) Synergetics. An introduction. Springer, BerlinzbMATHCrossRefGoogle Scholar
  36. Haken H (1983) Advanced synergetics. Springer, BerlinzbMATHGoogle Scholar
  37. Haken H (1996) Principles of brain functioning. A synergetic approach to brain activity, behavior, cognition. Springer, BerlinzbMATHGoogle Scholar
  38. Haken H (2002) Brain dynamics. Synchronization and activity patterns in pulse-coupled neural nets with delays and noise. Springer, BerlinzbMATHGoogle Scholar
  39. Haken H, Kelso J, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356MathSciNetzbMATHCrossRefGoogle Scholar
  40. Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15):2111–2121CrossRefGoogle Scholar
  41. Hansel D, Mato G, Meunier C (1993a) Phase dynamics of weakly coupled Hodgkin–Huxley neurons. Europhys Lett 23:367–372ADSCrossRefGoogle Scholar
  42. Hansel D, Mato G, Meunier C (1993b) Phase reduction and neural modeling. Concepts Neurosci 4(2):193–210Google Scholar
  43. Hashimoto T, Elder C, Okun M, Patrick S, Vitek J (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923Google Scholar
  44. Hauptmann C, Tass PA (2007) Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems 89:173–181CrossRefGoogle Scholar
  45. Hauptmann C, Tass PA (2009) Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J Neural Eng 6(1):016004CrossRefGoogle Scholar
  46. Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation. J Neural Eng 7:056008CrossRefGoogle Scholar
  47. Hauptmann C, Popovych O, Tass PA (2005a) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66:759–767zbMATHCrossRefGoogle Scholar
  48. Hauptmann C, Popovych O, Tass PA (2005b) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol Cybern 93:463–470MathSciNetzbMATHCrossRefGoogle Scholar
  49. Hauptmann C, Popovych O, Tass PA (2005c) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stochastics Dyn 5(2):307–319MathSciNetzbMATHCrossRefGoogle Scholar
  50. Hauptmann C, Omelchenko O, Popovych OV, Maistrenko Y, Tass PA (2007a) Control of spatially patterned synchrony with multisite delayed feedback. Phys Rev E 76:066209ADSMathSciNetCrossRefGoogle Scholar
  51. Hauptmann C, Popovych O, Tass P (2007b) Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices 4(5):633–650CrossRefGoogle Scholar
  52. Hauptmann C, Roulet JC, Niederhauser JJ, Doll W, Kirlangic ME, Lysyansky B, Krachkovskyi V, Bhatti MA, Barnikol UB, Sasse L, Buhrle CP, Speckmann EJ, Gotz M, Sturm V, Freund HJ, Schnell U, Tass PA (2009) External trial deep brain stimulation device for the application of desynchronizing stimulation techniques. J Neural Eng 6(6):066003CrossRefGoogle Scholar
  53. Hebb D (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  54. Kelso J (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MAGoogle Scholar
  55. Kilgard M, Merzenich M (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718ADSCrossRefGoogle Scholar
  56. Kiss IZ, Rusin CG, Kori H, Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316(5833):1886–1889ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. Kumar R, Lozano A, Sime E, Lang A (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61:1601–1604CrossRefGoogle Scholar
  58. Kuramoto Y (1984) Chemical oscillations, waves, turbulence. Springer, Berlin/Heidelberg/New YorkzbMATHCrossRefGoogle Scholar
  59. Lenz F, Kwan H, Martin R, Tasker R, Dostrovsky J, Lenz Y (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identified cells. Brain 117:531–543CrossRefGoogle Scholar
  60. Limousin P, Speelman J, Gielen F, Janssens M (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66(3):289–296CrossRefGoogle Scholar
  61. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457CrossRefGoogle Scholar
  62. Luecken L, Yanchuk S, Popovych OV, Tass PA (2013) Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front Comput Neurosci 7:63Google Scholar
  63. Luo M, YJ W, Peng JH (2009) Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol Cybern 101(3):241–246MathSciNetzbMATHCrossRefGoogle Scholar
  64. Lysyansky B, Popovych OV, Tass PA (2011a) Desynchronizing anti-resonance effect of m: n on–off coordinated reset stimulation. J Neural Eng 8(3):036019CrossRefGoogle Scholar
  65. Lysyansky B, Popovych OV, Tass PA (2011b) Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus 1(1):75–85CrossRefGoogle Scholar
  66. Lysyansky B, Popovych OV, Tass PA (2013) Optimal number of stimulation contacts for coordinated reset neuromodulation. Front Neuroeng 6:5CrossRefGoogle Scholar
  67. Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass P (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75:066207ADSMathSciNetCrossRefGoogle Scholar
  68. Majtanik M, Dolan K, Tass P (2006) Desynchronization in networks of globally coupled neurons with dendritic dynamics. J Biol Phys 32:307–333CrossRefGoogle Scholar
  69. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215CrossRefGoogle Scholar
  70. McIntyre C, Grill W, Sherman D, Thakor N (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469CrossRefGoogle Scholar
  71. McIntyre CC, Savasta M, Goff KKL, Vitek J (2004b) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115:1239–1248CrossRefGoogle Scholar
  72. Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382CrossRefGoogle Scholar
  73. Milton J, Jung P (eds) (2003) Epilepsy as a dynamics disease. Springer, BerlinzbMATHGoogle Scholar
  74. Miocinovic S, Parent M, Butson C, Hahn P, Russo G, Vitek J, McIntyre C (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580CrossRefGoogle Scholar
  75. Morimoto K, Fahnestock M, Racine R (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60CrossRefGoogle Scholar
  76. Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 59(5):706–713CrossRefGoogle Scholar
  77. Nabi A, Moehlis J (2011) Single input optimal control for globally coupled neuron networks. J Neural Eng 8(6):065008CrossRefGoogle Scholar
  78. Neiman A, Russell D, Yakusheva T, DiLullo A, Tass PA (2007) Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters. Phys Rev E 76:021908ADSMathSciNetCrossRefGoogle Scholar
  79. Nini A, Feingold A, Slovin H, Bergmann H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800–1805CrossRefGoogle Scholar
  80. Nowotny T, Zhigulin V, Selverston A, Abarbanel H, Rabinovich M (2003) Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci 23:9776–9785Google Scholar
  81. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  82. Pliss V (1964) Principal reduction in the theory of stability of motion. Izv Akad Nauk SSSR Math Ser 28:1297–1324zbMATHGoogle Scholar
  83. Popovych OV, Tass PA (2010) Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Phys Rev E 82(2):026204ADSMathSciNetCrossRefGoogle Scholar
  84. Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58CrossRefGoogle Scholar
  85. Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102ADSzbMATHCrossRefGoogle Scholar
  86. Popovych OV, Hauptmann C, Tass PA (2006a) Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern 95:69–85MathSciNetzbMATHCrossRefGoogle Scholar
  87. Popovych OV, Hauptmann C, Tass PA (2006b) Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback. Int J Bif Chaos 16(7):1977–1987MathSciNetzbMATHCrossRefGoogle Scholar
  88. Pyragas K, Popovych OV, Tass PA (2007) Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys Lett 80:40002ADSCrossRefGoogle Scholar
  89. Pyragas K, Novicenko V, Tass P (2013) Mechanism of suppression of sustained neuronal spiking under high-frequency stimulation. Biol Cybern 107(6):669–684MathSciNetzbMATHCrossRefGoogle Scholar
  90. Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71(2):215–219CrossRefGoogle Scholar
  91. Rodriguez-Oroz M, Obeso J, Lang A, Houeto J, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz M, Quinn N, Speelman J, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet A, Agid Y, Xie J, Benabid A, Lozano A, Saint-Cyr J, Romito L, Contarino M, Scerrati M, Fraix V, Blercom NV (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249CrossRefGoogle Scholar
  92. Rosenblum MG, Pikovsky AS (2004a) Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett 92:114102ADSCrossRefGoogle Scholar
  93. Rosenblum MG, Pikovsky AS (2004b) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904ADSMathSciNetCrossRefGoogle Scholar
  94. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72(2):370–384CrossRefGoogle Scholar
  95. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235CrossRefGoogle Scholar
  96. Schnitzler A, Timmermann L, Gross J (2006) Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris 99(1):3–7CrossRefGoogle Scholar
  97. Schöner G, Haken H, Kelso J (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257zbMATHCrossRefGoogle Scholar
  98. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468CrossRefGoogle Scholar
  99. Seliger P, Young S, Tsimring L (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906ADSMathSciNetzbMATHCrossRefGoogle Scholar
  100. Shen K, Zhu Z, Munhall A, Johnson SW (2003) Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 50:314–319CrossRefGoogle Scholar
  101. Silchenko A, Tass P (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74zbMATHCrossRefGoogle Scholar
  102. Silchenko AN, Adamchic I, Hauptmann C, Tass PA (2013) Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. NeuroImage 77:133–147CrossRefGoogle Scholar
  103. Singer W (1989) Search for coherence: a basic principle of cortical self-organization. Concepts Neurosci 1:1–26Google Scholar
  104. Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buhrle C, Maarouf M, Sturm V, Freund H-J, Tass PA (2008) The generation of parkinsonian tremor as revealed by directional coupling analysis. Europhys Lett 83(2):20003ADSCrossRefGoogle Scholar
  105. Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–926CrossRefGoogle Scholar
  106. Speckmann E, Elger C (1991) The neurophysiological basis of epileptic activity: a condensed overview. Epilepsy Res Suppl 2:1–7Google Scholar
  107. Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signaling. Wiley, New YorkGoogle Scholar
  108. Strogatz SH (2003) Sync: the emerging science of spontaneous order. Hyperion Books, New YorkGoogle Scholar
  109. Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–154CrossRefGoogle Scholar
  110. Tass PA (1996a) Phase resetting associated with changes of burst shape. J Biol Phys 22:125–155CrossRefGoogle Scholar
  111. Tass PA (1996b) Resetting biological oscillators – a stochastic approach. J Biol Phys 22:27–64CrossRefGoogle Scholar
  112. Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, BerlinzbMATHCrossRefGoogle Scholar
  113. Tass PA (2000) Stochastic phase resetting: a theory for deep brain stimulation. Prog Theor Phys Suppl 139:301–313ADSCrossRefGoogle Scholar
  114. Tass PA (2001a) Desynchronizing double-pulse phase resetting and application to deep brain stimulation. Biol Cybern 85:343–354zbMATHCrossRefGoogle Scholar
  115. Tass PA (2001b) Effective desynchronization by means of double-pulse phase resetting. Europhys Lett 53:15–21ADSCrossRefGoogle Scholar
  116. Tass PA (2001c) Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys Lett 55:171–177ADSCrossRefGoogle Scholar
  117. Tass PA (2002a) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87:102–115zbMATHCrossRefGoogle Scholar
  118. Tass PA (2002b) Effective desynchronization with a stimulation technique based on soft phase resetting. Europhys Lett 57:164–170ADSCrossRefGoogle Scholar
  119. Tass PA (2002c) Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E 66:036226ADSCrossRefGoogle Scholar
  120. Tass PA (2003a) Desynchronization by means of a coordinated reset of neural sub-populations – a novel technique for demand-controlled deep brain stimulation. Prog Theor Phys Suppl 150:281–296ADSCrossRefGoogle Scholar
  121. Tass PA (2003b) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88zbMATHCrossRefGoogle Scholar
  122. Tass PA, Hauptmann C (2006) Therapeutic rewiring by means of desynchronizing brain stimulation. Nonlinear Phenom Complex Syst 9(3):298–312MathSciNetGoogle Scholar
  123. Tass P, Hauptmann C (2007) Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol 64:53–61CrossRefGoogle Scholar
  124. Tass PA, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94:58–66MathSciNetzbMATHCrossRefGoogle Scholar
  125. Tass PA, Popovych OV (2012) Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol Cybern 106:27–36CrossRefGoogle Scholar
  126. Tass PA, Hauptmann C, Popovych OV (2006) Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int J Bif Chaos 16(7):1889–1911MathSciNetzbMATHCrossRefGoogle Scholar
  127. Tass PA, Silchenko AN, Hauptmann C, Barnikol UB, Speckmann EJ (2009) Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E 80(1):011902ADSCrossRefGoogle Scholar
  128. Tass P, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C (2012a) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:367–374Google Scholar
  129. Tass PA, Qin L, Hauptmann C, Doveros S, Bezard E, Boraud T, Meissner WG (2012b) Coordinated reset has sustained aftereffects in parkinsonian monkeys. Ann Neurol 72:816–820CrossRefGoogle Scholar
  130. Timmermann L, Florin E, Reck C (2007) Pathological cerebral oscillatory activity in Parkinson’s disease: a critical review on methods, data and hypotheses. Expert Rev Med Devices 4(5):651–661CrossRefGoogle Scholar
  131. Tukhlina N, Rosenblum M, Pikovsky A, Kurths J (2007) Feedback suppression of neural synchrony by vanishing stimulation. Phys Rev E 75:011918ADSMathSciNetCrossRefGoogle Scholar
  132. van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biological physics, vol 4. Elsevier, Amsterdam, pp 771–823Google Scholar
  133. Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21:6–17CrossRefGoogle Scholar
  134. Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in parkinsonian patients. Arch Neurol 61(1):89–96CrossRefGoogle Scholar
  135. Winfree A (1980) The geometry of biological time. Springer, BerlinzbMATHCrossRefGoogle Scholar
  136. Wunderlin A, Haken H (1975) Scaling theory for non-equilibrium systems. Z Phys B 21:393–401ADSCrossRefGoogle Scholar
  137. Zhai Y, Kiss IZ, Tass PA, Hudson JL (2005) Desynchronization of coupled electrochemical oscillators with pulse stimulations. Phys Rev E 71:065202ADSMathSciNetCrossRefGoogle Scholar
  138. Zhai Y, Kiss IZ, Hudson JL (2008) Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: desynchronization and clustering. Ind Eng Chem Res 47(10):3502–3514CrossRefGoogle Scholar
  139. Zhou Q, Tao H, Poo M (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300:1953–1957ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Peter A. Tass
    • 1
    • 2
    • 3
  • Christian Hauptmann
    • 1
  • Oleksandr V. Popovych
    • 1
  1. 1.Institute of Neuroscience and Medicine – Neuromodulation (INM-7), Jülich Research CenterJülichGermany
  2. 2.Department of NeurosurgeryStanford UniversityStanfordUSA
  3. 3.Department of NeuromodulationUniversity of CologneCologneGermany